
Multichannel Communication: Sunil Makhijani
Using Notification Servers in J2EE Applications
Free up your development time 12

Feature: Making Your John Musser & Bernhard Lenz
EJBs Polymorphic Combine inheritance with EJBs 20

Standards: J2EE Frameworks – Ted Farrell
Extend and Submit Maximizing productivity across your organization 28

Reusable Components: A List Tool for Teresa Lau
All Applications Designing for reuse and code maintainability 38

Platform Support: Does J2ME Have Matthew Ferris
Its Legs Yet? How to take advantage of mobile device programming 56

Feature:Wireless J2ME Applications with Bruce Hopkins
Java and Bluetooth The essential components 60

JDJ Labs: Small Worlds 1.5 Dale Churchett
by Information Laboratory, Inc. 68

Show Report:Web Services Edge 2002 East Steven Berkowitz
Conference & Expo Show wrap-up 70

Java COM

SYS-CON
MEDIA

RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2002

TM

JDJEDGE CONFERENCE & EXPO

INSIDE PAGE 77

From the Editor
Alan Williamson pg. 7

J2EE Editorial
Ajit Sagar pg. 9

J2EE FAQ
pg. 10

J2SE Editorial
Jason Bell pg. 36

J2ME Editorial
Jason R. Briggs pg. 54

Cubist Threads
Blair Wyman pg. 102

FULL CONFERENCE PROGRAM

OCTOBER 1–3, 2002

SAN JOSE, CA

Java COM

2 AUGUST 2002

sonic
www.sonic.com

3AUGUST 2002

Java COM

zerog
www.zerog.com

app
www.

Java COM

4 AUGUST 2002

5AUGUST 2002

Java COM

ple
apple.com

Java COM

6 AUGUST 2002

Java COM

bea
www.bea.com

7AUGUST 2002

Java COM

AUTHOR BIO
Alan Williamson is editor-in-chief of Java Developer’s Journal. During the day he holds the post of chief technical officer at n-ary
(consulting) Ltd, one of the first companies in the UK to specialize in Java at the server side.
Rumor has it he welcomes all suggestions and comments.

F R O M T H E E D I T O RD IF

Only Now Is Java Coming Fully Alive

alan@sys-con.com

ALAN WILLIAMSON EDITOR-IN-CHIEF

This past June, the crew and I spent a
week in one of the best cities in the
world. New York City played host to

SYS-CON’s Web Services Edge Conference &
Expo, where all the major players in the Web
services market come under one roof to talk
and debate the emergence of this new wave
of technology. It was good to catch up with
people and I thoroughly enjoyed grabbing
some quality face-to-face time with a num-
ber of authors, including Joey Gibson and
Rick Hightower, to name but a few. Their
insight into the current trends and technolo-
gies was most enlightening, and, hopefully,
I’ll be able to snaffle a guest editorial from
them at some point.

This is the real reason to go to these types
of shows: the people, listening to what they
have to say and learning what projects are
currently on the go. It seems that opinion on
the whole Web services revolution is still
divided. I had the dual pleasure of chairing
the “Supercharging Web Services with Java”
panel and sitting in on the “J2EE vs .NET”
panel. For example, when Simon Phipps
(Sun’s chief technology evangelist) was asked
to comment on the Web services movement
for the last 12 months, the first thing he did
was clarify his definition of Web services.
Personally, I think this was more to clarify
Sun’s position and differentiate themselves
from Microsoft’s view of Web services.

My most startling observation was that
.NET managed to creep into every conversa-
tion, with everyone offering their take on the
whole good versus evil war. Rick Ross, never
one to shy away from controversy, stirred the
pot a bit by claiming that Microsoft had the
greatest virus ever built: the Windows
Update. It’s used to ship service packs and
patches to desktops; competing with that is
going to prove difficult. He’s right. Have you
updated your Windows recently? Notice the
.NET Framework is now listed as one of the
options you can install. This will definitely

move the penetration of .NET somewhat.
Let’s be completely honest here: Micro-

soft isn’t going away. No matter what we say
regarding their skullduggery tactics, .NET is
here and we’ll have to learn to work with it,
not against it. Our greatest downfall as a Java
community would be to ignore it. If we’re
going to win this game, we have to weigh up
our opponent properly, and take them on
full tilt, as opposed to standing on the side-
lines shouting abuse.

To a large degree we’ve lost the battle on
the desktop, or at least the Microsoft
Windows desktop. In fact, it’s arguable
whether we were ever in the running. Swing
has done us no favors whatsoever, and while
the work Apple has done to make Swing run
like lightning is fantastic, it’s a little late com-
ing to the party. We needed that perform-
ance a number of years ago. This was a hotly
debated subject on the panels, with even the
likes of Ross and Phipps conceding that this
race has been largely lost.

However, before you go shelving your
Java books, it’s important to remember
where the majority of the Java development
is happening and why. The server side is
where Java has a very strong foothold, and
one that I don’t see being displaced no mat-
ter how many marketing dollars Microsoft
spends with their 1˚ of separation campaign.
Just not going to happen. Java has proved
itself time and time again as the only scala-
ble, portable, cost-effective solution avail-
able. Take this power and also transport it to
the mobile space, and you’ll discover anoth-
er revolution taking place that will have Java
firmly placed to lord over this arena.

A lot of industry pundits are already writ-
ing Java’s eulogy, proclaiming Microsoft the
winner. It angers me to read such blasphe-
mous articles from respected sources. Java is
far from dead: on the contrary, only now is
Java coming fully alive. In my view, you ain’t
seen nothing yet.

I N T E R N A T I O N A L A D V I S O R Y B O A R D
• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),

• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),
• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software

Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
EXECUTIVE EDITOR: NANCY VALENTINE

J2EE EDITOR: AJIT SAGAR
J2ME EDITOR: JASON R. BRIGGS
J2SE EDITOR: JASON BELL

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN: JIM MORGAN

ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI
EDITOR: M’LOU PINKHAM

MANAGING EDITOR: CHERYL VAN SISE
ASSOCIATE EDITORS: JAMIE MATUSOW

GAIL SCHULTZ
JEAN CASSIDY

ASSISTANT EDITOR: JENNIFER STILLEY
ONLINE EDITOR: LIN GOETZ

TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
BILL BALOGLU, JASON BELL, STEVEN BERKOWITZ, JASON BRIGGS, DALE

CHURCHETT, TED FARRELL, MATTHEW FERRIS, BRUCE HOPKINS, DOV KRUGER,
THERESA LAU, BERNHARD LENZ, SUNIL MAKHIJANI, JOHN MUSSER, BILLY

PALMIERI, NORMAN RICHARDS, AJIT SAGAR, ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $5.99/ISSUE

DOMESTIC: $49.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :

SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645
TELEPHONE: 201 802-3000 FAX: 201 782-9600

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly
(12 times a year) for $49.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2002 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator Carrie Gebert, carrieg@sys-con.com. SYS-CON Publications, Inc., reserves the right
to revise, republish and authorize its readers to use the articles submitted for publication.

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

J2SE
H

om
e

J2E
E

J2M
E

Java COM

metroworks
metroworks.com

Java COM

8 AUGUST 2002

9AUGUST 2002

ajit@sys-con.com

J 2 E E E D I T O R I A LO R

AJIT SAGAR J2EE EDITOR

Talking About My Generation

J 2 E E I N D E XX

9

10

28

20

12

Talking About My
Generation
Though technology brings to
fruition concepts that were
conceived of only a few
decades ago, our expecta-
tions of technology far
exceed the speed at which it
makes solutions available.
by Ajit Sagar

J2EE FAQ
The answers to your J2EE
questions

Using Notification Servers
in J2EE Applications
With the emergence of new
notification channels (such as
WAP phones, instant messag-
ing applications, and SMS
pagers), sending notifications
has become more complicat-
ed. Now applications have to
support an ever-changing set
of communication channels
that end users would like to
be notified about.
by Sunil Makhijani

Making Your EJBs
Polymorphic
Inheritance and polymorphism
are two of the most funda-
mental concepts in the object-
oriented design world. They
are used extensively in all
Java applications, except J2EE
apps using EJBs. The goal is
to combine some advantages
of inheritance such as code
reuse and polymorphism with
the advantages of EJBs, such
as distributed transactional
components.
by John Musser & Bernhard Lenz

J2EE Frameworks –
Extend and Submit
As the J2EE platform contin-
ues to grow and gain ground
in corporations and the battle
between Java and Microsoft
.NET intensifies, more and
more companies are looking
for help in building their J2EE
applications.
by Ted Farrell

J2SE
H

om
e

J2E
E

J2M
E

I’m sure you’ve heard many of the canni-
bal jokes. One of my favorites is a news
flash in a cannibal tribe announcing the

invention of the “pressure cooker”: “We
have news of a device that cooks a man
within minutes, and even lets out a whistle
when it’s done.” Though technology brings
to fruition concepts that were conceived of
only a few decades ago, our expectations of
technology far exceed the speed at which it
makes solutions available. Often when I’m
in the middle of architecting an n-tier
application or framework using J2EE tech-
nologies, I find myself asking questions,
such as: “What if I didn’t have to write a line
of code to achieve this,” or “can I just cut-
and-paste this into my next solution?”

My colleagues are often amused by my
faith in the fine art of “cut-and-paste.”
However, when things are down to the wire,
the speed at which existing code can be
slightly modified through pure editing
expertise is sometimes unmatchable. Of
course, this can lead to redundant code,
but that’s one of the joys of three-month
releases. When there’s a deliverable next
week, software engineering takes a back-
seat. That’s the harsh reality of the soft-
ware-development life cycle that many of
us are subsumed in. The key is to go back
and reengineer your solution. Of course,
those days when you could just as easily
engage external consultants to do so disap-
peared when the technology bubble burst.

Note that I am not advocating short-cir-
cuiting the software engineering cycle or
circumventing the development process.
Every time a shortcut is taken, it should be
documented, and the appropriate design
should be suggested – to be revisited at a
later time. Fortunately, the latest Java IDEs
offer several tools that alleviate the pain of
this unconventional design cycle, such as
refactoring support and reverse-engineer-
ing source code into modeling environ-
ments such as UML. The latest IDEs that
I’ve worked with are IntelliJ’s IDEA and

Borland’s JBuilder. Both offer these fea-
tures, as do other competing products. Add
unit and regression testing and source code
control to the mix, and the proposed design
cycle is almost achievable.

However, as software architects and
developers, part of our job is to create the
next level of abstraction. A software archi-
tect has substantial technology expertise
as well as business-domain expertise. A
J2EE architect utilizes his or her experi-
ence in applying Java’s distributed tech-
nologies to a solution in the primary
application domain. This involves creat-
ing not only reusable components and
code, but also automating the process of
software development for the next cycle.

I’d like to cite the example of one of my
recent projects. Our mission was to build an
application for the wireless domain. The
choice of J2EE technologies was an obvious
one, given our environment and our expert-
ise. With the advent of EJB 2.0, the Enterprise
JavaBeans–based implementation fit the bill
(as opposed to a mix of JSP, servlet, JDBC,
and EJB). The approach we took in our
design was to automate the process of creat-
ing the middle-tier components (the EJBs),
the hardest tier to build, test, and deploy. This
included both the entity as well as the “acces-
sor” session beans. We added utilities to gen-
erate components that leveraged the app
server tools with the right level of business-
domain components, so that we could repli-
cate, enhance, and modify these compo-
nents without rewriting too much code. The
utilities also generate the database schemas
and the constraints on the database.
Although this effort cost us a precious couple
of months in our release cycle, over a six-
month cycle we were able to build an appli-
cation that can now be applied across a vari-
ety of customers in our business domain.

Although there are no silver bullets,
designing for reuse and automating compo-
nent generation can take you a long way
toward achieving your ultimate objective.

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ and the founding editor of XML-Journal. Ajit is the director of engineering with Controlling Factor,

a leading B2B software solutions firm based in Dallas, and is well versed in Java,Web services, and XML technologies.

Java COM

PUBLISHER, PRESIDENT,AND CEO
FUAT A. KIRCAALI fuat@sys-con.com

COO/CFO
MARK HARABEDIAN mark@sys-con.com

VICE PRESIDENT, BUSINESS DEVELOPMENT
GRISHA DAVIDA grisha@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com
ASSOCIATE SALES MANAGERS

CARRIE GEBERT carrieg@sys-con.com
KRISTIN KUHNLE kristen@sys-con.com
ALISA CATALANO alisa@sys-con.com
LEAH HITTMAN leah@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

NANCY VALENTINE nancy@sys-con.com
EDITOR

M’LOU PINKHAM mpinkham@sys-con.com
MANAGING EDITOR

CHERYL VAN SISE cheryl@sys-con.com
ASSOCIATE EDITORS

JAMIE MATUSOW jamie@sys-con.com
GAIL SCHULTZ gail@sys-con.com
JEAN CASSIDY jean@sys-con.com

ASSISTANT EDITOR
JENNIFER STILLEY jennifier@sys-con.com

ONLINE EDITOR
LIN GOETZ lin@sys-con.com

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN
JIM MORGAN jim@sys-con.com

LEAD DESIGNER
LOUIS F. CUFFARI louis@sys-con.com

ART DIRECTOR
ALEX BOTERO alex@sys-con.com

ASSOCIATE ART DIRECTORS
CATHRYN BURAK cathyb@sys-con.com

RICHARD SILVERBERG richards@sys-con.com
AARATHI VENKATARAMAN aarathi@sys-con.com

ASSISTANT ART DIRECTOR
TAMI BEATTY tami@sys-con.com

W E B S E R V I C E S
WEBMASTER

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNERS

STEPHEN KILMURRAY stephen@sys-con.com
CHRISTOPHER CROCE chris@sys-con.com
CATALIN STANCESCU catalin@sys-con.com

A C C O U N T I N G
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS RECEIVABLE/COLLECTIONS SUPERVISOR
KERRI VON ACHEN kerri@sys-con.com

ACCOUNTS PAYABLE
JOAN LAROSE joan@sys-con.com

ACCOUNTING CLERK
BETTY WHITE betty@sys-con.com

S Y S - C O N E V E N T S
VICE PRESIDENT, SYS-CON EVENTS

CATHY WALTERS cathyw@sys-con.com
CONFERENCE MANAGER

MICHAEL LYNCH mike@sys-con.com
SALES EXECUTIVES, EXHIBITS

MICHAEL PESICK michael@sys-con.com
RICHARD ANDERSON richard@sys-con.com

C U S T O M E R R E L A T I O N S
CUSTOMER SERVICE MANAGER

ANTHONY D. SPITZER tony@sys-con.com
CUSTOMER SERVICE REPRESENTATIVE

MARGIE DOWNS margie@sys-con.com
JDJ STORE MANAGER

RACHEL MCGOURAN rachel@sys-con.com

Java COM

10 AUGUST 2002

J 2 E E F A QQ

A
Q

J2
SE

H
om

e
J2

E
E

J2
M

E

WHAT TYPE OF JAVA OBJECTS DO DEVELOPERS CREATE IN EJB DEVELOPMENT?

For each Enterprise JavaBean in your applica-
tion, you need to extend the appropriate home

and remote interfaces (local/remote), and provide
an implementation for the appropriate enterprise
bean (entity/session/message-driven). The local
interfaces and message-driven beans were intro-
duced in EJB 2.0. The J2EE FAQ in a previous JDJ
(Vol. 7, issue 5) covered the interfaces provided by
the J2EE application server vendor. You may want
to refer to that FAQ to set the context for this
month’s.

The figure below illustrates the classes EJB
developers need to implement to build their appli-
cations.

The top box shows the interfaces provided by
the J2EE application server. The bottom box shows
the classes that need to be implemented by EJB
developers. Note: You don’t need to implement all
the classes shown in the figure. Implement only
what’s required by the application. For example,
you may not need a message-driven bean for your
application, or you may choose to use session
beans directly and access the database via JDBC
rather than entity beans.

Typically, to write an EJB component, you
need to extend two interfaces and implement one

class. However, if you’re writing a message-driv-
en bean, implement the EJB class only, not the
interfaces. Since message-driven beans are the
exception to the rule, we’ll discuss them after we
look at the classes/interfaces that developers
need to code.

In EJB 2.0, before coding your EJB component
(session or entity bean) you need to determine
whether you want to make its methods available
through a local or a remote interface, i.e., will your
beans be colocated in the same application server
or will they communicate across the network? In
EJB 1.1, local interfaces didn’t exist, so you always
had to create the remote interface. As you can see
in the figure, the two interfaces you need to imple-
ment are the home (EJBHomeLocal/EJBHome) and
object interfaces (EJBObjectLocal/EJBObject) for
the bean.

Let’s assume you’re creating a new EJB com-
ponent class called MyClass. You would have to
create the appropriate interfaces for the class to be
used, then you’d have to implement the class itself.

For message-driven beans, only the EJB class
needs to be coded. The EJB interfaces are not
needed since there are no direct calls from the
client.

11AUGUST 2002

Java COM

compuware
compuware.com

Java COM

12 AUGUST 2002

J2
SE

H
om

e
J2

E
E

J2
M

E Using Notification Servers in J2EE Applications

M U L T I C H A N N E L C O M M U N I C A T I O N

With the emergence of new notifica-
tion channels (such as WAP phones,
instant messaging applications, and
SMS pagers), sending notifications has
become more complicated. Now appli-
cations have to support an ever-chang-
ing set of communication channels that
end users would like to be notified
about. Each of these channels has a sep-
arate API that must be used to commu-
nicate with it, so a considerable amount
of time is needed by developers to code
these APIs into their applications. In
addition, once developers have finished
building the communication mecha-
nisms, they will also need a way to
determine where to contact an end user
at what time (should an e-mail be sent
to the user’s PC, should an SMS page be
sent to the user’s cell phone, or both?).

In this article, I describe how a
Notification Server solves the problems
associated with sending out notifica-
tions in a multichannel environment. It
abstracts communication code out of
J2EE applications and lets end users
manage the devices with which they
would like to be contacted. Application
developers will need to learn only how
to communicate with the Notification
Server, freeing up their time to work on
more important tasks.

JavaMail has been used for the past
few years as a standard way of notifying
users of business events in Java applica-
tions. To enable business notifications,
all a developer had to do was learn the
JavaMail API and build the notification
code into his or her application. Since e-
mail was the only delivery channel avail-
able to an end user, the Java code need-
ed to implement notifications was fairly
straightforward. Listing 1 is an example
of what you might use to send out a
business event (an order status mes-

sage) to an end user.
As you can see, the application

developer needs to keep track of a num-
ber of pieces of information in order to
send an event to the end user – the e-
mail server to send the e-mail, the
sender address, the receiver e-mail
address, and the presentation format of
the e-mail itself. In this example, the
message was sent as HTML. The appli-
cation developer also needs to build
extensive exception handling into this
piece of code – e.g., should the message
be resent if an exception is thrown while
sending it?

The emergence of new communica-
tion channels (e.g., SMS, instant mes-
saging, voice browsers) makes the appli-
cation developer’s task even more diffi-
cult; in addition to managing all the
aforementioned pieces of information
needed to send an e-mail, he or she also
needs to manage the information for all
the communication channels. The
developer will also need to learn the dif-
ferent Java APIs needed to communicate
with these channels (e.g., an SMS Java
API, an instant messaging Java API). As
you can surmise, application developers
will need a considerable amount of time
to integrate new channels into their
application. If some of these notification
tasks were abstracted into a single ser-
vice, development time would decrease
significantly.

Body
When sending notifications to differ-

ent channels, device-specific considera-
tions must be kept in mind. A simple
“transcoding” solution, such as cram-
ming an HTML-based e-mail into a two-
line display on a cell phone, would not
work well. Instead, a more useful
approach would be to select content for

a particular channel. Let’s take the case
of sending a news alert to a user. Table 1
lists what the optimal content for each
channel might be.

As J2EE developers have learned,
separating business logic from presen-
tation has many advantages. As a result,
the Model-View-Controller (MVC) de-
sign pattern has been widely adopted by
the development community to build
J2EE Web applications. Similarly, when
sending notifications to multiple
devices, separating the notification con-
tent from the presentation layer is
essential. Since each device has its own
presentation content (e.g., VoiceXML for
voice notifications), separating the pres-
entation layer is important since the
majority of Java developers are not
experts in multichannel content.

By using XML and XSL, you can sep-
arate business content into an XML
Schema, and separate presentation con-
tent into XSL stylesheets. The XML
Schema stores information such as the
event target user, the event subject, and
the event body. The device-specific XSL
stylesheets store presentation-specific
content. Listing 2 illustrates a sample
XML Schema containing information
about a business event. Elements such
as message, description, and detail are
clearly defined so they can be easily for-
matted. Listing 3 illustrates a sample
XSL stylesheet that will be used to trans-
form the event XML document into an
SMS message. Since screen size is limit-
ed on most devices that can receive SMS
messages, only the message itself is dis-
played.

Now that I have explained how you
would separate event content from pres-
entation, you need a way to store all the
various communication channels an
end user would use. In addition, end

WRITTEN BY
SUNIL MAKHIJANI

For the past few years the JavaMail API has been used to imple-
ment notification services in J2EE applications. E-mails were an
easy way to notify end users of business events in an application.

Free up your development time

13AUGUST 2002

Java COM

rational
www.rational.com

Java COM

14 AUGUST 2002

infrag
infragistics.com

gistics

15AUGUST 2002

Java COM

Java COM

16 AUGUST 2002

M U L T I C H A N N E L C O M M U N I C A T I O N

users would also want a way to modify
when they would be contacted on each
specific channel. Instead of maintaining
this information in your application,
why not have end users do this? A
Notification Server should have a Web-
based application that end users can use
to store profile information about the
various channels (i.e., what is my e-mail
address? what is my SMS number? what
is my instant messaging name? etc.), as
well as the times they want to be notified
on each channel (e-mail from 9 to 5, SMS
from 5 to 10, voice notifications from 10
to 12). Figure 1 illustrates a possible front
end for a user profile data entry.

Now that we’ve defined all the func-
tionality a Notification Server should
provide, let’s look at it from an architec-
tural perspective (see Figure 2). Both
users and applications can connect to
the Notification Server to send notifica-
tions out, which the server would format
using XSLT stylesheets and forward to
the various delivery servers (only two
are mentioned in this diagram: an SMS
Gateway and a SMTP Server). Users
would also have the ability to set up pro-
file information and view detailed infor-
mation on alerts that have been sent to
them. Finally, the Notification Server
will persist all of its data to a persistent
data store.

As you can see, it’s easy to add new
delivery mechanisms without making
many fundamental changes. To add fax
notifications, all you’d have to do is
establish connectivity between the
Notification Server and the fax delivery
mechanism (a fax server), and then add
an XSL stylesheet to perform a transfor-
mation of the alert data into a format
suitable for a fax machine.

Now that we have a high-level view
of what the Notification Server looks
like, let’s look at how it would be imple-
mented in Java. Figure 3 shows part of a
high-level class diagram of the core of

the Notification Server. Table 2 pro-
vides descriptions of some of the class-
es.

Referring back to Listing 1, let’s see
how Notification Servers can simplify an
application developer’s coding tasks.
Instead of using the JavaMail API, we’ll
use the API provided with an off-the-
shelf Notification Server. The following
code snippet would accomplish the
same task in less than half the amount of
code shown in Listing 1.

Event event = new Event(new

PortalID("jdoe"),"Order Status",

"Your order is complete");

EventToolkit etoolkit =

EventToolkit.getInstance()

.createEvent(event);

In the first line of the snippet, an
event is created using an Event object,
which takes in the user, event header,
and event body as parameters of the
constructor. In the second line, the
event is sent to the Notification Server
using the EventToolkit object. Using a
Notification Server, all the application
developer must know is the username to
send the event to. The Notification
Server manages all the other informa-
tion that the developer needed to know
in Listing 1 (the e-mail server to connect
to, the sender and receiver e-mail
addresses, and the HTML presentation
formatting). In addition, this piece of
code will enable the developer to send
SMS, voice, and instant messaging
alerts; the developer doesn’t have to
learn any additional APIs.

Figure 4 shows what’s going on behind
the scenes of the call. A SAX parsing han-
dler (EventHandler) is created to parse in
the XML-based event. Once parsing is
successful, an EventQueueItem (contain-
ing the Event) is added to the event
queue. The Notification Server will then
send out notifications from the
EventQueue, based on the user profile
associated with the event.

Summary
End users employ a number of chan-

nels to obtain information – e-mail,
SMS, instant messaging, and voice noti-
fications, to name a few. Although the
JavaMail API was useful in the past,
Notification Servers provide the most
logical way to send out notifications to a
variety of channels. By abstracting com-
munication APIs (such as JavaMail) out
of your code and into the Notification
Server, your development time will be
freed up for more important tasks.

J2
SE

H
om

e
J2

E
E

J2
M

E

TABLE 1 Optimal content for a news alert

TARGETED CHANNEL CONTENT TO BE SENT
E-mail An HTML forwarded e-mail, with the full body of

the story and associated images

Instant messaging The first few lines of the story, with a link to open
the full body of the story in a Web browser

SMS over a cell phone The headline of the story, with a link to open the
full body of the story in a WAP browser

FIGURE 1 Notification profile user interface

smakhijani@cysive.com

AUTHOR BIO
Sunil Makhijani is a

senior software
engineer at Cysive,

Inc., where he works
in sales support for

the Cymbio
Interaction Server.

He’s also a
contributing author to

the BEA WebLogic
Server Bible pub-
lished by Hungry
Minds Publishing.

TABLE 2 Notification Server classes

CLASS DESCRIPTION
Event Represents some event that has occurred. Each recipient of this event will be

notified via the devices defined in his or her profile. Both the Event and
EventChild extend the interface XMLTags, an interface that defines constant
fields for different XML elements used within the Notification Server.

EventChild Represents a child element of the Event whose content is not a simple
datatype, such as a string or integer. An attachment or link
is an EventChild.

Attachment Abstract class representing a notification attachment.

Transformation The base class in performing XML translations

EventQueueItem Represents an item that will be placed in an EventQueue. The item will con-
tain an event, which will be stored in the queue until the item is
successfully delivered.

17AUGUST 2002

Java COM

oracle
www.oracle.com

Java COM

18 AUGUST 2002

// Set your mail server properties here
Properties props=new Properties();
props.put("mail.host","mailserver.somewhere.com");

// Get a JavaMail session using the mail server
Session session =
Session.getDefaultInstance(props, null);

// Create the message
Message message = new MimeMessage(session);

// Fill the message
message.setSubject("Claim Assigned");
message.setFrom(
new InternetAddress("from@someone.com"));
message.addRecipient(Message.RecipientType.TO,
new InternetAddress("jdoe@someone.com"));

String content = "<H1> Please inspect the car and
submit incident report 024199 <H1>";

message.setContent(content,"text/html");

// Send the message
Transport.send(msg);

<event>
<recipient domain="cysive.com">jdoe</recipient>
<message>Claim Assigned to you</message>
<reference name="RedDot Insurance Inc."/>
<description>Claim Assigned</description>

<detail>
<name>todayDate</name>
<value>05/24/2002</value>

</detail>

<detail>
<name>Reason</name>
<value>Please determine repair costs</value>

</detail>

<detail>
<name>Claim #</name>
<value>024199</value>

</detail>
</event>

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
<xsl:output method="text" version="1.0"
encoding="UTF-8" indent="yes"/>

<xsl:template match="/">
<xsl:for-each select="event">

<xsl:value-of select="message"/>
</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

Listing 3

Listing 2

Listing 1

FIGURE 3 High-level class diagram of the core of the Notification Server

FIGURE 4 Sequence diagram

FIGURE 2 Notification architecture

J2
SE

H
om

e
J2

E
E

J2
M

E

19AUGUST 2002

Java COM

sitraka
www.sitraka.com

In this article we’ll first review why this is the norm in EJB-based applica-
tions and then demonstrate techniques you can use to reclaim some of these
goals within the constraints imposed by the EJB standards. (We are assuming
you’re familiar with the basics of EJBs.) The crux of this article focuses on an
application that takes the classic object-oriented design example of a hierarchy
of vehicle types and translates it into polymorphic EJBs. The aim is to combine
some advantages of inheritance such as code reuse and polymorphism with
the advantages of EJBs such as distributed transactional components.

While this is not a universally applicable technique, you should by the
end see how there’s a suitable subset of problems that can be aptly solved
with this approach. We’ll also review interesting Java Naming and Directory
Interfaces (JNDI) and other coding techniques you may find useful. A
complete set of working examples (EJBs, client, descriptors, and scripts)
are available on the JDJ Web site (www.sys-con.com/java/sourcec.cfm)
and have been tested under WebLogic 6.1 and JBoss 2.4.

Implementation Inheritance and Polymorphism
In class hierarchies you often want to treat an object instance as its

base type rather than the specific specialized subtype that it is. This is
a fundamental element of abstraction and is often manifest through
polymorphic behavior – you define a method that expects a graphics
object of type Shape on which you’ll invoke the draw method but
aren’t concerned at runtime if this Shape is a Circle, Square, or Polygon
subtype. You see this daily in Java development.

To achieve this behavioral characteristic there are two classic
approaches: inheritance or interfaces. In the inheritance model there
would be a base Shape class, likely defined as abstract, from which a
set of subtypes would be derived. The base defines a set of methods
and attributes and probably implements some shared behavior used
by all subclasses. This implementation inheritance is typically an “is-
a” approach: a Circle is a Shape.

J2
SE

H
om

e
J2

E
E

J2
M

E

20 AUGUST 2002

21AUGUST 2002

Java COM

altoweb
www.altoweb.com

In the interface model an interface such as shape would be
defined, and any class that wants to “act-as-a” Shape would
implement the methods in this interface (although for
“shapes” the typical design is “is-a”). This interface would
define one or more methods that any implementer is required
to define. Also note that interfaces themselves can form hier-
archies and thereby achieve interface inheritance. Again, you
see this throughout the various JDKs and your own code.

The key tradeoff between these approaches is often seen
through a design model that differentiates between these “is-a”
and “acts-as-a” behaviors, as well as the fact that Java supports
only single inheritance and interfaces provide a mechanism
that allows objects to fulfill multiple roles. One of the benefits of
implementation inheritance is code reuse in which common
code exists or is refactored into base classes and shared by all
derived types. In interface
inheritance this is possible
only through other design
techniques such as contain-
ment and delegation. (And
it’s fair to say that there isn’t
always a right or wrong
approach to choose – a
healthy ongoing debate
exists as to the design trade-
offs between the imple-

mentation versus interface inheritance.)
In EJBs, much of what occurs along these lines uses the

interface-based approach. Many of the key APIs in the
javax.ejb package are interfaces that your classes must define:
EJBObject, EJBHome, SessionBean, EntityBean, etc. Within
most EJBs the interactions with other objects typically occur
through containment, delegation, and other “uses” relation-
ships rather than through inheritance. This is reflected in most
of the common EJB design patterns: session facade, value
objects, and business delegates. Let’s look into why.

Vehicle Hierarchy Example
The classic introductory example of inheritance and poly-

morphism – a hierarchy of vehicle types – typically looks like
Figure 1.

In the Vehicle base class we want to define a set of meth-
ods and attributes that all vehicles will support.
Subsequently, at runtime we want to be able to treat
instances of the vehicle hierarchy equally so we can invoke
the startEngine() without concern for whether the exact
subtype being used is a Car, Truck, or other derived type. In
addition, the base class will implement some of these meth-
ods so they need not be redefined for each subtype, and
some common attributes, such as fuelLevel, will be defined
in the base class as well. This is all fairly basic.

In the world of EJB this isn’t nearly so simple. With EJBs a
component is not one object, it’s three: the bean, its remote
interface, and its home factory. It’s these three parts that cause
nearly all the complications. It’s only by virtue of the Java lan-

guage that each of these parts may be base or derived types, but
the EJB as a whole is not “inheritable.” (As a matter of fact, the final
EJB 2.0 specification in Appendix D.4 states, “The current EJB spec-
ification does not specify the concept of component inheritance.
There are complex issues that would have to be addressed in order
to define component inheritance.” But it does go on to say, “how-
ever, the bean provider can take advantage of the Java language
support for inheritance” using interface inheritance and imple-
mentation inheritance – both of which we do here.)

Figure 2 shows the bare-bones vehicle hierarchy and the
core EJB design that we’ll discuss later.

See how quickly the boxes multiply. Yet from an EJB per-
spective this is quite a simple picture. On the client side (for
the home and remote interfaces) there’s no extra inheritance
here; it’s just the bare minimum that’s required for any EJB. On
the bean side there’s just a small hierarchy of those two
derived types inheriting from a base (this time VehicleEJB),
which in turn implements the standard SessionBean interface.

We’ll continue with our example in more detail later, but
it’s instructive to first look at how our simple pieces in Figure 2
fit into the final bigger picture (see Figure 3).

As you can see, this is more complex still. What this figure
demonstrates is the greater whole into which all EJBs fit. At the top
are the base interfaces, such as java.rmi.Remote and java.io
.Serializable, while at the bottom are the actual container-generated
final implementation classes. (Note that each server is free to define
and construct these actual implementations as it sees fit – for exam-
ple, JBoss dynamically constructs implementations whereas
WebLogic builds these when the EJBC compiler is run.)

Because of the potential complications in utilizing inheritance
with EJBs, we’ve chosen a relatively simple design pattern for our
approach. The key is that we perform inheritance only on the
bean implementation side, expose a common remote interface,
and use JNDI lookups to grab the appropriate binding at runtime.

To focus on polymorphism and object behavior, our design
centers on stateful session beans (and is equally applicable to
stateless session beans). With entity beans there are addition-

J2
SE

H
om

e
J2

E
E

J2
M

E

22 AUGUST 2002

FIGURE 3 The big picture

FIGURE 2 Basic EJB vehicle hierarchy

FIGURE 1 Classic vehicle hierarchy

23AUGUST 2002

Java COM

?

precise
www.precise.com

al complications, such as returning differing primary keys,
which we’ll discuss in more detail later. As for message-driven
beans, because they have no homes or remotes and a single
asynchronous onMessage() point of entry, our model doesn’t
really apply. (As a side note, IBM, in their VisualAge for Java
product, provides extensions for EJB inheritance, but because
these are proprietary we don’t cover them here.)

The Code
Our vehicle example consists of a single client application

with the following:
1. A main() method taking arguments to specify vehicle type,

color, etc.
2. A buyVehicle() method that obtains home and remote references

to an EJB of the appropriate runtime type (a Car or Truck)
3. A testDrive() method to drive the generic vehicle

The first thing the client’s main() method does, after vali-
dating the command line, is obtain the appropriate JNDI con-
text. This context can be specified on the command line or use
default values (we go into more background on JNDI shortly).

To connect to the JNDI tree, a context has to be created
with an optional Hashtable as a parameter. The Hashtable val-
ues specify the provider’s JNDI context factory as well as the
URL to the JNDI tree. The code below shows how this is
retrieved for JBoss (note that WebLogic’s JNDI connection fac-
tory is a class called “weblogic.jndi.WLInitialContextFactory”
and the default URL is “t3://localhost:7001”).

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"org.jnp.interfaces.NamingContextFactory ");

env.put(Context.PROVIDER_URL,

"jnp://localhost:1099");

Context context = new

InitialContext(env);

Leveraging JNDI
With that context in hand, the

client can call its own buyVehicle()
method to get a VehicleRemote based
on the command-line options. It’s
here that things get a little interesting.

First of all, the EJB specification requires a session bean to
define an EJBHome object that contains factory-like create
methods to construct the bean. In our case, this is a simple
two-argument create() that takes the vehicle color and an air-
conditioning flag as arguments and returns a VehicleRemote
reference. The remote interface contains our shared “busi-
ness” methods: startEngine(), accelerate(), brake(), and
getFuelLevel(). All vehicle implementations use the same
home and remote interface.

You might now ask: How can I access a specific subtype
vehicle implementation on a J2EE server when the home and
remote interfaces are the same for all vehicles?

This happens with the magic of JNDI. Within an EJB con-
tainer, and a J2EE server more generally, the required JNDI

services provide a mechanism to
store object instances within a
globally accessible namespace (a
JNDI tree). These objects can then
be remotely retrieved using the
JNDI name as a key. In addition,
the EJB specs require application
servers to publish deployed EJB
home interfaces using JNDI
names as defined in each EJB’s

deployment descriptor.
This means we can use JNDI as a level of indirection. First,

each concrete vehicle implementation gets bound to the JNDI
tree under its own unique JNDI name (to be more accurate,
it’s the home interface that’s looked up by name). This
VehicleHome object is then used to create a VehicleRemote
reference that in turn instantiates and manages (with the
assistance of the container) the designated EJB instance. It’s
this association between a home/remote pair and an EJB
class, which is made in the deployment descriptor, that allows
us to use the same home and remote interfaces but create dif-
ferent subtypes on the server. If this sounds a bit confusing,
the next section may help clarify things.

The mechanism for this binding is specified in the follow-
ing two deployment descriptors: the generic ejb-jar.xml used
to describe the session beans (see Figure 4) and the vendor-
specific decriptor used to assign a JNDI name to each EJB –
jboss.xml or weblogic-ejb-jar.xml for JBoss and WebLogic,
respectively (see Figure 5). (Note that in this example we’ve

24 AUGUST 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 6 Sample client interaction

FIGURE 5 The weblogic-ejb-jar.xml

FIGURE 4 The ejb-jar.xml

canoo
www.canoo.com

25AUGUST 2002

Java COM

chosen to assign the beans JNDI names that are the same as
their EJB names in these descriptor files – this is not required,
we could have chosen differing JNDI names without breaking
the rules of J2EE or our polymorphism.)

In our example, the result is that we can use the exact same
code on the client side, but at runtime can construct and
interact with different EJB subtypes by simply changing the
JNDI name we look up.

Here’s an example of the code that does this using the con-
text we obtained earlier. First a VehicleHome is obtained from
JNDI based on the binding name specified:

VehicleHome vehicleHome =

(VehicleHome) context.lookup("Car");

Now we can create a specific vehicle (a CarEJB) using the
home interface’s create method that takes two arguments, a
color and an air-conditioning boolean flag:

VehicleRemote vehicle = vehicleHome.create("silver",

false);

Finally we get to drive: we start the vehicle, get up to speed,
slow down for a curve, and then turn:

vehicle.startEngine();

vehicle.accelerate(55);

vehicle.brake(30);

vehicle.turnSteeringWheel(angle);

This block of code can work equally well if its remote refer-
ence is to a CarEJB or a TruckEJB.

Figure 6 shows a similar example in which a client first
does a JNDI lookup on a “Car”, gets the home, creates the
remote, and then drives the car. It then does a lookup on
“Truck” and can perform the identical steps.

Issues and Alternatives
As we’ve shown, our vehicle example capitalizes on some

of the inheritance wiggle room left in the EJB specifications.
However, there are additional constraints defined by the spec-
ifications that hinder what otherwise might seem viable
approaches to using inheritance.

For example, it might seem that creating a hierarchy of home inter-
faces that parallels the beans would be nice. But the create() method
of an EJBHome poses an interesting problem. In particular, the Java
language does not allow overloading method signatures based on
return type. Why does this matter? Because it means you can’t do this:

public BaseHome extends EJBHome {

public BaseRemote ejbCreate() throws RemoteException;

}

public DerivedHome extends BaseHome {

public DerivedRemote ejbCreate() throws RemoteException;

}

In addition, the ejbCreate() method of bean-managed entity
beans must return a primary key and derived classes must return
that same type. This is true for single object finder methods as well.
With finders, whether returning single objects or Collections, it
would be nice if, for a hierarchy of EJBs, the base class finder could
return the right subtype(s) for the given search criteria, but unfor-
tunately this can’t happen automatically with the current standard.
Which in the end is why home interface inheritance is particularly
problematic and why our examples avoid it – too messy.

Not to say that there aren’t other EJB inheritance alterna-
tives to consider.

A more elaborate approach is to use interface inheritance
on the client side, where each derived type on the bean side
gets a corresponding derived remote interface on the client
side (see Figure 7).

The advantage to this approach is that it allows the client to
access methods defined only in the derived types, not just
those in the base Vehicle class. For example, if TruckEJB adds
an unhookTrailer() method, that can be added to the
TruckRemote interface. The disadvantage is that the client, at
some point in the code, must now explicitly differentiate
between derived types. It can no longer just pass in a different
JNDI name and get a VehicleHome; it must create distinct
home types (remember, we can’t have a single home create dif-
ferent remote types). Still, at most points the client code can
benefit by interacting with the more general VehicleRemote
objects anywhere specific subtype methods are not needed.

(Keep in mind that in our primary example, the base
VehicleEJB also adds a bit of value by fulfilling the role of an

adapter pattern by providing default implementations of
the EJB life-cycle methods such as ejbRemove(),
ejbPassivate(), and setSessionContext() in which we
cache the context in a protected member variable.)

Another technique, one that isn’t so much an alter-
native as it is a minor modification to the first design, is to
define a business interface called Vehicle and have both
VehicleRemote and VehicleEJB implement this interface
(see Figure 8). This provides a degree of consistency and
explicit signature enforcement across both sides.

In the end, if and how you choose to use polymor-
phism and inheritance with your EJBs will naturally vary
according to your needs. Over time, the EJB specifica-
tions will inevitably evolve and the ways in which this
can be done will evolve along with them.

26 AUGUST 2002

FIGURE 7 Alternate hierarchy

FIGURE 8 Vehicle business interface

J2
SE

H
om

e
J2

E
E

J2
M

E
AUTHOR BIOS

John Musser is a lead
architect on an

e-logistics system and
teaches software
development at

Columbia University.
Over the past 20
years he has built

software ranging from
Wall Street trading

systems to games for
Electronic Arts.

Bernhard Lenz is a
senior consultant with

over eight years of
experience in

distributed,
component-oriented,

and multitiered
systems. His clients
include a varieity of

major Wall Street
firms in insurance,

banking, and
brokerage. He is cur-

rently working with
John Musser on a
large-scale J2EE

e-logistics system.

jrmusser@hotmail.com & blenz@bermark.com

27AUGUST 2002

Java COM

ibm
www.ibm.com

J2
SE

H
om

e
J2

E
E

J2
M

E J2EE Frameworks – Extend and Submit

S T A N D A R D S

With the large number of standard
technologies available, all being ex-
posed at the programming interface or
metadata level, making sense of what,
when, and how to use these technolo-
gies is becoming harder.

This problem opens the door for
J2EE frameworks – tools and applica-
tions that manage much of the complex-
ities of the underlying J2EE data, code,
and deployment and allow the user to
work in a much more efficient and
coherent manner. A framework central-
izes different common design-time and
runtime resources, allowing developers
to concentrate on the unique business
logic of the application, and avoid hav-
ing to build the underlying infrastruc-
ture to support the applications.

This can lead to bigger productivity
gains for developers, as well as more
flexibility for corporations as many of
the frameworks don’t require in-depth
knowledge of a particular programming
language or technology, thus creating
more opportunities for a diverse group
of developers to contribute to building
the application. The catch is that frame-
works must be able to do this without
locking the users into proprietary tools
and data, which isn’t easy.

Current Frameworks
Frameworks aren’t new. Different

types of frameworks have been in exis-
tence for over a decade. They’re
designed to help an organization build
and deploy an application more quickly
and efficiently. Some come with a pack-
aged application for use in customizing
that application, while others are more

generic in nature, allowing users to
build custom applications.

One of the problems with traditional
frameworks is the lock-in. With every
proprietary framework comes tool, data,
and vendor lock-in to that framework.
Committing to using one of these frame-
works means committing to the frame-
work vendor and its data format for the
life of the application. With the lack of
industry standards and ever-growing
time-to-market pressures, many corpo-
rations have bought into these frame-
works to help build their applications.
These frameworks help most companies
build their applications quicker. Power-
Builder and Forte are good examples of
these types of proprietary frameworks.

Problems don’t surface until a
change in the industry, technology, or
application requirements forces the
company to make changes in their
application, and often in the technology
stack supporting the application. The
Internet was one of the biggest catapults
to this crossroad. To reach more users
and eliminate costly software distribu-
tion and upgrades, developers began
fleeing client/server architectures and
heading for the Web, with simpler,
browser-based user interfaces for their
applications.

At this point, the company is at the
mercy of the framework provider and
the technology and direction they’re
promoting. If the framework can’t sup-
port the new requirements or the frame-
work provider chooses not to support
these requirements, the company is
stuck with an application that requires a
massive port or migration to continue

evolving, or in more extreme cases, a
complete rewrite onto a new technology
stack.

This dilemma is not unique to users
of proprietary frameworks. Companies
that choose to build the underlying
application infrastructure themselves
can run into similar problems. The lack
of industry standards in building appli-
cations lends itself to this inevitable
predicament.

J2EE
J2EE is designed to solve this prob-

lem. With the support of every major
software vendor in the market except
one, J2EE has quickly become a robust,
scalable solution for building enterprise
applications. With over 30 vendors ship-
ping J2EE-compliant runtimes and
thousands of customers building and
deploying J2EE applications on those
runtimes, J2EE has proven itself as the
industry-standard technology for build-
ing enterprise applications.

To prevent the technology dead end
that was mentioned earlier, J2EE
remains a living thing. More than 300
members of the Java Community
Process (JCP) are continuously working
to grow and improve the standard. While
no one company can come up with all
the answers, the JCP ensures that a mul-
titude of diverse knowledge and experi-
ence goes into building the Java 2 stan-
dards. As the industry grows and
changes, so do the J2EE and associated
standards. Each addition to the specifi-
cations is an extension to the architec-
ture, thus allowing customers building
applications on J2EE to evolve them as

WRITTEN BY
TED FARRELL

As the Java 2 Enterprise Edition (J2EE) platform continues to
grow and gain ground in corporations and the battle between Java and
Microsoft .NET intensifies, more and more companies are looking for
help in building their J2EE applications.

Maximizing productivity across
your organization

Java COM

28 AUGUST 2002

29AUGUST 2002

Java COM

borland
www.borland.com

Java COM

30 AUGUST 2002

S T A N D A R D S

technology evolves, as opposed to
migrating, integrating, or rewriting
them.

One of the major benefits of J2EE is
how the architecture separates the dif-
ferent components and functionality of
the application. The design promotes
the separation of functionality, such as
keeping the business data, the business
logic, and the presentation layers sepa-
rate from each other. This allows organi-
zations to build more flexible applica-
tions that are able to change as the mar-
ket and industry change, as well as much
easier to maintain and support. The
downside to this approach is that this
architecture becomes more complicated
to manage. The application is broken up
into different pieces, and developers and
businesspeople working on it need to be
aware of those different pieces and how
they all work together. It’s a trade-off
between a flexible, scalable architecture
and development complexity.

This puts the pressure on the tools
and development environments to hide
these complexities and allow developers
to focus on the task of building the appli-
cation and not be bogged down by all the
details of the underlying architecture.
Java Integrated Development En-
vironments (IDEs) have made significant
progress over the last year in providing a

toolset that greatly reduces some of the
complexities of Java, J2EE, and Web serv-
ices development and deployment.

While in the past the Java community
has been criticized for not having tools
with the depth or integration of Microsoft’s
tools, that gap has been greatly reduced
over the past 12 months. Although a large
number of developers gladly welcome the
new generation of IDEs and are receiving
immediate benefits from them, others still
find them either too heavy or still too tech-
nical for their needs.

This brings up the question: Can one
tool solve the problems of all the devel-
opers in a company? The answer is “No.”
This answer is something that software
providers have avoided admitting for
years. A single tool or product that can
appeal to every developer, businessper-
son, and analyst in your company does
not exist, and never will. The good news
is that the J2EE architecture provides the
platform, infrastructure, and process
that are able to solve this problem. The
industry just needs to realize it and work
together to accomplish it.

J2EE Frameworks
Frameworks can be a powerful mech-

anism to abstract the complexities of the
infrastructure away from the logic of the
application. This can lead to larger pro-

ductivity gains and a more maintain-
able application. Another advantage
is that users don’t have to complete-
ly understand the underlying tech-
nology in order to contribute to the
building of the application. The level
of abstraction will vary between
frameworks depending on the target
audience and intended usage.

Currently, several products on
the market claim to be J2EE frame-
works. They accomplish this by pro-
viding a proprietary framework that
eventually either generates code
that runs on a J2EE application serv-
er, or generates metadata that’s
processed by components running
on a J2EE application server. In
either case, users are stuck with pro-
prietary metadata describing their
application. J2EE is not about stan-
dardizing implementations, but
rather standardizing to the imple-
mentations in the form of the code
and metadata consumed by the
implementations. Having your data
in a proprietary format that requires
a proprietary tool to manipulate
does not give you the portability or
freedom of choice promised by the
J2EE architecture.

These frameworks behave this
way because it’s easier. It’s easier to

work with concise, complete, and pro-
prietary data than with the complex and
modular data of the J2EE architecture.
It’s easier to invent things yourself than
to work with the JCP to make them part
of the standards. It’s easier to claim the
standards are incomplete than it is to
work to extend them to meet your
needs. It’s easier to regenerate code from
metadata than to build up metadata
from code. The result of these choices,
however, is a lot of proprietary data for-
mats that lock companies into a vendor
and toolset, and, ironically, have them
end up with the opposite result of what
they were trying to accomplish: to build
their application on open standards.

Alternatively, the definition of a J2EE
framework should be a set of design-time
tools and, optionally, runtime compo-
nents that ease the development, man-
agement, and deployment of J2EE appli-
cations by directly manipulating J2EE
code and metadata. The features of a
J2EE framework are not as important as
the data that it manipulates. There will be
multiple frameworks that target different
types of users, performing different tasks
with different skill sets. By this definition,
a Java IDE can be considered a frame-
work. Current Java IDEs can help in the
creation, management, and deployment
of J2EE applications, all while editing
standard Java code and J2EE XML meta-
data. A user can then take that code and
metadata and manipulate it with any
other Java IDE, regardless of the vendor.

If J2EE frameworks work off a standard
set of code and metadata, companies can
mix-and-match the types of tools and
frameworks that they use throughout the
development organization and process.
Each framework can have a particular set
of features targeted at different types of
users and still manipulate the same
underlying data as all the rest of the
frameworks. This would include frame-
works from different vendors as well.

For example, there’s a J2EE frame-
work that allows the user to pick a data-
base table and create an object so he or
she can use that table information in the
program. Behind the scenes, the frame-
work might be creating an entity EJB
with its multiple Java files and XML
deployment files. Then another user,
who does not use the same framework as
the first user, is able to work on the same
EJB using a favorite IDE or even a text
editor. The first user may know nothing
about Java or EJBs and the second user
might know everything about Java and
EJBs, but they can work together on the
same project and the same code base.
This is almost impossible with the
frameworks on the market today.

J2
SE

H
om

e
J2

E
E

J2
M

E

north
woods

31AUGUST 2002

Java COM

jinfonet
www.jinfonet.com

Java COM

32 AUGUST 2002

S T A N D A R D S
J2

SE
H

om
e

J2
E

E
J2

M
E

Extend and Submit
Accomplishing the task of standard-

izing the code and metadata across all
tools and frameworks becomes more
difficult as the level of abstraction in the
framework increases. The more the
framework removes the user from the
code and metadata and incorporates
process, the more mapping the frame-
work vendors must do to store their
information in the standard formats.
Because the J2EE standards are written
at the code and implementation level,
the data formats are not always
designed to store the abstract informa-
tion that would be needed by many of
the frameworks. This could lead to ven-
dors using a mix of some standard data
as well as some proprietary data where
the standards, didn’t support a particu-
lar notation or abstraction. Although
this is better than a totally proprietary
solution, without the right commitment
to the standards, this still lends itself to a
certain level of vendor, tool, and data
lock-in.

The resolution to this is to extend
and submit. When framework vendors
come across a situation in which the
current standards do not provide ade-
quate means to store some metadata
that’s needed to support their frame-
work, they should extend the current

specification, and then submit those
changes back to the standards commu-
nity.

The Java Community Process has
been very good at turning around
requests to extend the Java 2 standard in
a fairly short time. (These requests are
called Java Specification Requests or
JSRs.) The JCP is also good at providing
lots of information on these JSRs to the
public during the standard-making
process.

There is a chance that the require-
ment the framework vendor is looking for
is already covered in an existing JSR that’s
still in process and has not yet become
part of the Java 2 standards. In this case,
vendors should align themselves with the
JSR and ensure that what they produce
will be compliant with the technology
once it becomes part of the standard. In
other situations, vendors’ requirements
may not be covered in an existing specifi-
cation or JSR. In this case, vendors should
submit a JSR to the JCP with their request
while developing their framework. This
path requires more discipline on the part
of the framework vendors because they’ll
be producing a technology that the JCP
will be debating and changing as it
becomes part of the standard.

Throughout the JSR process, ven-
dors’ specific requirements may turn

into the industry’s broader require-
ments, causing vendors to revisit their
implementation to align with the new
standards. This will result in vendors
spending more time implementing their
solution, which in turn will ensure that
their solution is part of the standard.

A good example of this is the EJB
support in J2EE. With versions 1.0 and
1.1 of the EJB specification, applica-
tion server vendors needed to store
more information than the specifica-
tion allowed; their runtimes were
more advanced than the specifica-
tions. The result was that vendors
extended the EJB specification in their
own proprietary manner. Then with
version 2.0 of the EJB specification,
those vendors were able to collaborate
and extend the EJB standard to
include additional information. The
EJB specification was extended, and
then submitted back for inclusion in
the standards. The alternative to this is
for vendors to continue producing
proprietary metadata for their frame-
works, which will lead to the fragmen-
tation of the standards.

Industry Effort
To help stop the fragmentation of the

J2EE standard, Sun Microsystems sup-
plies a J2EE Compatibility Test Suite (CTS)
to any vendor wishing to license the J2EE
technology. Vendors must pass these
tests in order to claim they are J2EE-com-
pliant. As mentioned earlier, J2EE is pri-
marily focused on runtime implementa-
tion, not design time. Therefore, all these
compatibility tests are focused on run-
time, not design-time, compatibility. This
means that as long as vendors produce
something that complies with the J2EE
runtime standards, they’re considered
J2EE compliant, regardless of how they
store the metadata that is used to create
the compliant runtime code. Currently,
no test can validate that the metadata a
tool is producing is J2EE compliant, just
the data that it deploys.

This means the framework vendors
must remain disciplined when building
their frameworks and adhere to using
standard code and metadata. This
makes the job of building these frame-
works harder, especially when compet-
ing with Microsoft .NET. Microsoft has
the luxury of controlling the runtime,
the data, and the tools – one of the
advantages of a totally proprietary solu-
tion. Therefore it’s up to the J2EE ven-
dors to continue to prove that you don’t
have to give up a robust, scalable, and
open architecture just to get a produc-
tive set of tools. Users will be able to
benefit from all the advantages J2EE has

capela
capela.com

33AUGUST 2002

Java COM

esri

www.esri.com

Java COM

34 AUGUST 2002

S T A N D A R D S

over Microsoft .NET, without sacrificing
efficiency, flexibility, or ease of use.

Framework Architecture
Just as having one tool cannot satisfy

the needs of everyone, having several
different tools, even if they’re sharing the
same underlying data, can also be a
headache. Multiple tools can lead to
more maintenance and management
problems, overlapping technologies, and
questions about what to use when and
why. To get around this, J2EE frameworks
should not be standalone technologies,
but rather standalone functionality
plugged into a common architecture.

Some of the Java IDE vendors have
extendible architectures. This is different
from an add-in API to an IDE because
with extension architecture, you can
build tools that have nothing to do with
IDEs. The architecture provides you with
common resources such as project man-
agement, navigation, file I/O, and data
sharing, and lets the different extensions
define the functionality. Each extension
is treated as a first-class entity and can
share the data and the processes of the
application with the other extensions.

By building J2EE frameworks on top
of a common architecture, the frame-
works can take advantage of the
resources already provided by other

extensions, such as compiling, code
generation, parsing, debugging, etc.
There’s no need for the framework to
build this duplicate technology when it
can share it with the rest of the prod-
ucts.

Another advantage to using a com-
mon architecture has to do with the
problem of trying to make everyone
happy. For example, a user using a
framework wants to cut out and edit
some code directly. If the framework is
a different product than the user’s Java
IDE, he or she needs to save all the
work and then bring up the IDE, load
the data, and begin working. When
done, he or she needs to perform the
opposite tasks to get the framework up
to date with the code changes. With a
common architecture, however, all the
functionality is in the same product.
The user would just switch to the code
editor and make changes. When the
user switches back to the framework
(tab, panel, window, etc.), the frame-
work is automatically notified by the
architecture of the changes and
updates. In this environment, the user
is not bound by any one framework,
but can use functionalities of different
ones when needed. Since all the
frameworks work off the same data,
everything is kept synchronized.

Summary
Building enterprise applications can

be complicated. J2EE provides a proven,
scalable, and robust platform for
accomplishing this task. As the technol-
ogy continues to grow and companies
are looking for more ways to utilize the
J2EE infrastructure, J2EE frameworks
will play a key role in coordinating and
optimizing the resources and efforts
across organizations. To ensure that this
next phase of productivity tools and
frameworks is successful, the J2EE com-
munity must remain disciplined and
focused on preserving and growing the
Java 2 standards by committing to main-
taining a common, standard set of code
and metadata.

Just as J2EE application vendors will
continue to compete on who has the
best implementation of the runtime
standards, J2EE framework vendors will
compete on who has the best set of fea-
tures and processes to build applica-
tions using the standard metadata. With
all the different types of users and
requirements, the market to provide
J2EE frameworks could be big. Vendors
will be able to compete in this market by
the features that their frameworks pro-
vide and not their proprietary data.

J2
SE

H
om

e
J2

E
E

J2
M

E

AUTHOR BIO
Ted Farrell is
architect and

director of strategy
for application

development tools
at Oracle

Corporation. He’s
responsible for the

technical and
strategic direction

of Oracle’s
development tools
products, including

Oracle9i JDeveloper,
Oracle’s Java and
XML Integrated

Development
Environment (IDE)

for J2EE application
and Web services

development. ted.farrell@oracle.com

int
www.int.com

35AUGUST 2002

Java COM

new atlanta
newatlanta.com

jasonbell@sys-con.com

You may be aware of a radio pro-
gram in the UK called “Desert
Island Discs.” Basically, well-

known people choose which records they
would want if they were stuck on a desert
island (I’ve yet to hear anyone say they’re
taking a CD player). Something of a similar
nature is happening to me at the moment,
as I’m working from home (but far from
stranded).

Since I didn’t have any of my normal
development tools on the laptop I bor-
rowed, I had to hunt around the Internet
and download the tools I needed to get my
jobs done. The tools all had one common
feature – they’re all open source. So I
decided to present my selection of “Desert
Island Open-Source Disks.”

jEdit
(www.jedit.org)

I’m currently working with version 4 of
jEdit and it’s a joy to use. In addition to
being a normal source editor with syntax
highlighting, it has the ability to use plug-
ins. If there’s one plug-in I would advise
you to download, it’s JavaStyle as it tidies
up your code layout and also inserts the
relevant JavaDoc comments.

Jikes
(www-124.ibm.com/developerworks/
oss/jikes/)

IBM’s open-source Java compiler has
more meaningful error messages than the
original compiler. It also suggests where to
use try/catch/finally blocks when working
with code that throws exceptions. It han-
dles all the same command-line tags as
javac and is very fast at compiling.

JUnit
(www.junit.org)

If you’re using the Extreme Program-
ming route to get software development
projects done, you may have come across

JUnit already. For the rest of the world, this
little utility runs unit tests on your Java
code; all you have to do is create a small
class to run the code. There’s a more in-
depth look at JUnit in the article “Test
First, Code Later” by Thomas Hammell
and Robert Nettleton (JDJ, Vol. 7, issue 2).

Ant
(http://jakarta.apache.org/ant)

This is the build tool that everyone
seems to be using, so it would be silly of
me to even attempt to leave it out.
Personally, I’d be lost without it. As with
most software that comes from the Apache
Foundation, be prepared to play around
with how things work and also to read
some of the documentation. Once you get
going though, you can’t imagine how you
got on without it.

SCP/MindTerm SSH Client
(www.isnetworks.net)

MindTerm is a secure shell (SSH)
client built entirely in Java. ISNetworks
added a secure copy (SCP) function and
made it available for download. More and
more people have disabled the telnet
access in favor of SSH and I’m glad to see
it happening, for everyone’s peace of
mind.

The following demonstrates the bene-
fits of open source. I had a problem with
the directory listing since FreeBSD was
not recognizing some of the flags in the
“ls” command. I fired up jEdit, found the
source file, and corrected the problem. A
quick compile and I added it back to the
JAR file and was back at work.

There you have it – the software that
kept me going. All free and with its source
code so you can either improve its design
or functionality or just mosey around and
see how it works. The software you use
will depend on who you work for, since

J 2 S E E D I T O R I A LO RJ
J2

SE
H

om
e

J2
E

E
J2

M
E

Desert Island Open-Source Disks
JASON BELL J2SE EDITOR

36 AUGUST 2002

J 2 S E I N D E XX

36

44

38

Java COM

AUTHOR BIO
Jason Bell is a programmer and senior IT manager for a B2B Web portal in York, England. He has been involved in numerous

Web projects over the past five years, the last two of which have been servlet-based.

sometimes you don’t have any say in the
matter. I try to encourage people to use
the tools that suit them and that will
enable them get the job done in a manner
everyone is happy with.

The nice thing about open source is
that there are a lot of people willing to
share a lot of information. If you want to
know more about open-source princi-
ples, The Cathedral and the Bazaar by
Eric S. Raymond was helpful. Though it
may be geared toward the Linux folks, it’s
still a good read and gives you a bit of his-
tory, a few examples, and some other
texts to ponder over (once you’ve read JDJ
word for word, though).

Desert Island
Open-Source Disks

There’s a radio
program in the UK called

“Desert Island Discs.” Well-
known people choose which

records they would want if
they were stuck on a desert
island. So I decided to pres-
ent my selection of “Desert
Island Open-Source Disks.”

by Jason Bell

A List Tool for All
Applications

How often do you
copy and paste old code

when developing GUIs? If I do
that more than once or twice
on the same code, it’s worth-
while making it a component
for the benefits of reuse and

highly maintainable code.
by Teresa Lau

Performance Tuning
in Java

It’s common practice to
ignore efficiency, scattering

layers of unnecessary ineffi-
ciency everywhere. This arti-

cle shows that it’s just as
easy to write faster code

without taking extra develop-
ment time to do it.

by Dov Kruger

37AUGUST 2002

Java COM

macromedia
macromedia.com

Java COM

38 AUGUST 2002

A List Tool for All Applications

R E U S A B L E C O M P O N E N T S

The initial overhead for creating a
component is high, but it will pay off if
you design it well, making it useful for
other occasions. The better you design
it, the more likely you’ll use it in the
future and the more benefits you’ll get.

ListPanel and ListTabPanel are two
reusable components I developed. In
this article, I describe how you can use
them to simplify and speed up your GUI
development. I also explain how they’re
implemented and hope you can learn
some useful skills from them.

ListPanel
ListPanel is a GUI component that

allows a user to filter, sort, display, and
search a list of any object in different
ways. Figure 1 shows a list of Auction
items that can be filtered by their status
(open, closed). The list can sort, display,
and search by the Auction item number
or name. Using this component the
developer writes only a few lines of code
and some inner classes to create the list
GUI, which normally involves compli-
cated code. It’s easy to understand and
the code is very maintainable.

Please note that for simplicity, this
component assumes that the way you
display and search data is the same way

you sort data. You can modify
this component to make it more
sophisticated and to handle the
sort, display, and search differ-
ently.

Creating an Instance of
ListPanel

The following shows how easy
it is to create the GUI in Figure 1
using the ListPanel.

The ListPanel contains a list of
Auction objects (see Listing 1 for
the Auction class). (Listings
1–7 can be downloaded from
www.sys-con.com/java/sourcec
.cfm.)

ListPanel listPane = new ListPanel();

listPane.setData(createTestData ());

listPane.addFilterSpec(new

StatusFilter("Open"));

listPane.addFilterSpec(new

StatusFilter("Closed"));

listPane.addSortSpec(new IDSort ());

listPane.addSortSpec(new NameSort ());

listPane.refreshGUI();

This code involves only five steps:
1. Create the ListPanel with the con-

structor.
2. Set the data (in this case, a list of all

Auction objects) by setData.
3. For each FilterSpec, call addFilter-

Spec.
4. For each SortSpec, call addSortSpec.
5. Call refreshGUI once you’ve set up all

the filter and sort conditions.

Creating a FilterSpec
To create a FilterSpec, extend the

abstract class FilterSpec (see Listing 2)
and provide implementation for the fol-
lowing abstract methods:
• String getName(): Defines how the fil-

ter name is displayed in the JCombo-
Box

• boolean evaluate(Object o): Defines
the filter condition

To create the filter based on the
Auction status use the following:

class StatusFilter extends FilterSpec

{

private String status;

public StatusFilter (String s)

{

status = s;

}

public boolean evaluate(Object o)

{

return (((Auction)

o).status.equals(status));

}

public String getName()

{

return status;

}

}

Creating a SortSpec
To create a SortSpec, extend the

abstract class SortSpec (see Listing 2)
and provide implementation for the fol-
lowing abstract methods:
• String getName(): Defines how the

sort name is displayed in the
JComboBox

• getSortString(Object o): Defines how
to sort, display, and search by

The code for creating the sort by
ItemNo, Name of the Auction is as fol-
lows.

class IDSort extends SortSpec

{

public String

getSortString(Object o)

{

return ((Auction) o).itemNo;

}

public String getName()

{

return ("Item No");

}

}

class NameSort extends SortSpec

{

publicString

getSortString(Object o)

{

return ((Auction) o).name;

}

public String getName()

{

return ("Name");

}

}

Listing 1 provides the code to gener-
ate the AuctionList.

WRITTEN BY
TERESA LAU

How often do you find yourself copying and pasting old
code when developing GUIs that are similar to others you’ve
developed? Many times I find that if I do that more than once or
twice on some code, it’s worthwhile to make a component out of
it for the benefits of reuse and highly maintainable code.

Designing for reuse and code maintainability

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 AuctionList

39AUGUST 2002

Java COM

silverstream
sliverstream.com

Java COM

40 AUGUST 2002

R E U S A B L E C O M P O N E N T S

Another Example
The ListPanel is a flexible compo-

nent. Figure 2 shows another list created
on a totally different object, User. This
list has three filters (active, inactive, all)
and two sorts (ID, LastnameFirstname).
This entire GUI is created in one routine,
createListPane() shown in Listing 3.

In Listing 3, you can see that because
the FilterSpec and SortSpec are all small
classes, I’ve made them all inner classes.
In situations where I have a lot of little
classes used in one place, inner classes
are useful to avoid proliferation of class-
es.

ListTabPanel
ListTabPanel contains a ListPanel and a

TabPanel. It provides a structure that you
can add tabs to to perform different actions
on a particular selected object from the list.
The implementation uses the Mediator pat-
tern, where the ListTabPanel is a mediator
that takes care of the communication
between the ListPanel and the TabPanel.

Using the same Auction class I dis-
cussed earlier and the AuctionList, I cre-
ate the AuctionPanel shown in Figure 3.

Creating the AuctionPanel involves
three simple steps:
1. Create the Auction ListPanel defined

in the previous section.
2. Create a TabPanel that contains three

different tabs.
3. Call the constructor, passing it the

ListPanel and the TabPanel.

ListPanel l = AuctionList.create-

ListPanel();

TabPanel t = createTabPanel();

ListTabPanel p = new ListTabPanel (l,

t);

The details for creating the TabPanel
in createTabPanel follows:

TabPanel t = new TabPanel();

t.addTab(new AuctionTab());

t.addTab(new MinimalTab("Seller"));

t.addTab(new

MinimalTab("Buyer"));

Here I create the TabPanel,
and then add as many TabObjects
as needed by calling addTab. Each
TabObject defines how the object
is displayed and handled in a par-
ticular tab. Let’s look at how the
first tab is implemented in
AuctionTab.

public class AuctionTab extends

TabObject

{

public AuctionTab()

{

// … Create the GUI here

}

public void setData(Object o)

{

// … populate the data to

the GUI

}

}

The AuctionTab extends TabObject,
which is a JPanel. The developer usually
does three things to implement this tab:
1. Creates the GUI in the constructor
2. Implements the method setData to

populate the GUI with an object
3. Manipulates the object in its own way

and updates it as appropriate (e.g., save
to database, etc.); when manipulated,
an object should call the appropriate
methods notifyAdd(), notifyDelete, or
notifyUpdate() to let its listener know of
the change

Listing 4 provides the code for
AuctionPanel.

Implementation of the ListPanel
The ListPanel component provides a

GUI that can filter, sort, display, and
search any kind of object. The compo-
nent has no idea what kind of objects
are in the list and how it should filter or
sort; it’s up to the developer to define
this information by calling:
• setData (List data)
• addFilterSpec (FilterSpec f)
• addSortSpec (SortSpec s)

With this information from the
developer, the component then handles
the rest, which includes:
• Creating JComboBox to allow the user

to choose the methods to sort and fil-
ter

• Filtering the data according to the fil-
ter the user selected

• Sorting the data according to the sort
the user selected

• Displaying the data according to the
sort the user selected

• Implementing the search according
to the sort the user selected

Jakarta Common Collection
To implement the filter and search

mechanism, I need some methods
where I can:
• Filter from a list based on some con-

dition and return a filtered list
• Search from a list based on some con-

dition and return the first object that
matches

While the Collections class in the
java.util package does provide a search

method, binarySearch(List l, Object o,
Comparator c), there’s no mechanism to fil-
ter the data in the list. Furthermore, this
search method requires that I sort the list
before passing the list in. In addition, if I
want the filter condition to be a union or
intersection of two conditions, the Col-
lections class doesn’t have set theory meth-
ods that I can apply to the collections.

The Jakarta Commons Collections
(http://jakarta.apache.org/commons/i
ndex.html) is a set of reusable compo-
nents related to collections. It strives to
provide some features that were left
unfilled by Sun’s implementations in the
Collection class.

Using Jakarta Commons Collections
you can search and filter a collection of data
based on a Predicate using the method
search and find in the CollectionsUtil class.
Predicate is an abstract class with a method
evaluate(Object o) that performs some
Predicate that returns true or false based on
the input object. In addition, the Col-
lectionUtils class provides set theory meth-
ods like intersection and union if you want
to operate the filter on more than one con-
dition.

Implementation Details
The ListPanel has three pieces of

information after the developer creates
an instance of it: dataList (a list of all
objects), filterList (a list of all filters), and
sortList (a list of all sorts).

Using filterList and sortList, ListPanel
creates combo boxes that contain lists of
all available filters and sorts. When the user
selects a sort or a filter, the currentFilter or
currentSort object is updated, and the
method refresh is called. In refresh, the
data is first filtered as follows:

// Filter the data according to

currentFilter

filteredData =

CollectionUtils.select(data,

currentFilter);

displayModel.clear();

Iterator i = filteredData.iterator();

while (i.hasNext())

displayModel.addElement(i.next());

I get the filteredData by calling the
select (List l, Predicate p) method in the
CollectionUtils class of Apache Common
Collections. You should now see why
FilterSpec implements Predicate, because
now all I need to do is to pass currentFilter
(which is a FilterSpec) to the select (List l,
Predicate p) method.

After the data is filtered, it’s sorted as
follows:

// Sort the data according to

currentSort

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 2 User list

41AUGUST 2002

Java COM

dice
www.dice.com

Java COM

42 AUGUST 2002

R E U S A B L E C O M P O N E N T S

displayModel.sort(currentSort);

displayList.setModel (displayModel);

// Display the data according to

currentSort

displayList.setCellRenderer(current

Sort);

I created a class SortableListModel
(see Listing 5) that can sort data by call-
ing sort (Comparable c). The
displayModel you saw earlier is a
SortableListModel, so I sort this list by
simply calling displayModel.sort
(currentSort). You should now see why
SortSpec implements Comparator,
because with that, all you need is to pass
currentSort to this sort method.

Next, I display the data in the JList by
setting the cellRenderer. Again you can
see that SortSpec extends Default-
ListCellRenderer, which means you can
just pass currentSort to the setCell-
Renderer(ListCellRenderer) method.

Last, when the user types something
in the text field and hits the search but-
ton, the method search does the follow-
ing:

currentSort.setSearch(searchTF.getText

());

Object o = CollectionUtils.find

(filteredData,currentSort);

displayList.setSelectedValue(o, true);

Here I first set the text to be searched,
then use the CollectionUtils.find (List
list, Predicate predicate) method to find
the first object that satisfies the
Predicate from the list. Again, you see
that SortSpec implements Predicate,
which is why you can just pass
currentSort to the CollectionsUtils.find
method. Once the object is found, select
it on the JList.

Listing 5 provides the code for the
ListPanel.

Implementation of ListTabPanel
To understand how the ListTabPanel

is implemented, you first need to
understand the Mediator pattern.
Mediator is a pattern that promotes

loose coupling between classes. It
accomplishes this by being the only
class with detailed knowledge of the
methods of other classes. Classes
inform the Mediator when changes
occur, and the Mediator then passes
them on to any other classes that need
to be informed.

The ListTabPanel (which contains
the ListPanel and the TabPanel) is the
Mediator here. The ListPanel and
TabPanel don’t know about each other.
They notify only the ListTabPanel of
changes in themselves, or get notified by
the ListTabPanel when changes come in.
Clearly defining the tasks of each com-
ponent will make coding easy and clear.
Let’s now look at the tasks of each com-
ponent:

Tasks of the ListPanel
• Provide a list that can filter, sort, dis-

play, and search in different ways.
• When a user selects an item, it should

notify its listener (in this case the
Mediator).

• Provide update, delete, and add
methods so another object (in this
case the Mediator) can adjust its list
data.

Tasks of the TabPanel
• Provide a setData method for each tab

so that another object (in this case the
Mediator) can set data and populate
the tab accordingly.

• When a tab calls update, delete, or
add on an object, it should notify its
listener (in this case the Mediator).

Tasks of the ListTabPanel
• When an item is selected from the

ListPanel, this component (as a
Mediator) gets notified and calls
setData on the TabPanel.

• When the TabPanel updates some
object, this component (as a
Mediator) gets notified and calls
update, add, or delete on the
ListPanel.

Using PropertyListener
In my implementation, the commu-

nication between the ListPanel and
TabPanel and their Mediator is done by
PropertyListener. The ListTabPanel is a
PropertyChangeListener. When you con-
struct a ListTabPanel with a ListPanel
and a TabPanel, the ListTabPanel will
add itself as a PropertyChangeListener to
the ListPanel and TabPanel.

tabPane.addPropertyChangeListener(this

);

listPane.addPropertyChangeListener

(this);

By doing so, when the TabPanel or
ListPanel wants to notify the
ListTabPanel of anything, it’ll call
firePropertyChange to pass the property
change and the object that was changed
to the ListTabPanel.

The ListTabPanel received these
change events in its propertyChange
method, and it will do the appropriate
thing to notify other components if nec-
essary.

public void propertyChange

(PropertyChangeEvent evt)

{

// Get notify when ListPanel

select some object

if (evt.getPropertyName().equals

(LIST_SELECTED))

// Ask TabPanel to set the

object to its screen

tabPane.getSelected().setData

(evt.getNewValue());

// Get notify when TabPanel update

some object

if (evt.getPropertyName().equals

(TAB_OBJECT_UPDATE))

// Ask ListPanel to update its

list

listPane.update(evt.getOldValue(),

evt.getOldValue());

// …. Other events

}

The full source of TabPanel,
TabObject, can be found in Listing 6,
and the full source of ListTabPanel can
be found in Listing 7.

Conclusion
The ListPanel and ListTabPanel are

two useful GUI components that are
highly reusable and can promote rapid
GUI development. The ListPanel takes
care of the common features like sort,
filter, search, and display on a list. The
ListTabPanel takes care of the interac-
tion between a list of objects and the
detail panels on a specific object in that
list. These two components are created
so that they’re applicable on any kind of
object and provide a clean interface for
developers. Using them, developers can
concentrate on coding the details spe-
cific to their object.

More important, this article not only
described how to use these compo-
nents, but also their implementation.
It’s useful to understand the whole
design process for making a component
reusable and loosely coupled, resulting
in clear and maintainable code.

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 3 AuctionPanel

AUTHOR BIO
Teresa Lau has been
an independent Java

consultant for over
four years, with an

emphasis on financial
applications. She

received her MS in
computer science

from the University of
Waterloo, and her BS

in engineering from
the University of

California, Berkeley.

ttylau@whsys.com

43AUGUST 2002

Java COM

parasoft
www.parasoft.com

Performance Tuning in

Java
For faster code
without a lot
of effortT

Written by Dov Kruger

 stated about two decades ago in
Jon Bentley’s “Programming
Pearls” column – defer
optimization and get your code
working first. This wisdom has
been amplified by numerous
writers on object-oriented

design, coding, thinking, and
more. The reigning philosophy has

been stated as, “get it working first,
then determine which areas are the
critical ones and optimize only
those.”

he following mantra was first

Java COMJava COM

44 AUGUST 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

Java COM

AUGUST 2002 45

Java COM

Since 20% of the code is run 80% of
the time, this seems like a reasonable

idea. Bentley was an early advocate of
the use of profiling tools that show

which parts of the code are run the
most, and targeting the most crit-

ical areas first. On the whole, this
is good advice, but the lesson has

been learned too well. Today it’s
common practice to ignore effi-

ciency, scattering layers of unneces-
sary inefficiency everywhere without
thought. This article shows that it’s just as

easy to write faster code without taking
extra development time to do it, and
teaches something about the way Java
optimizes your code.

Method Calls
Object-oriented design is an organi-

zational technique; at the individual
method level, code has been written the

same way for the past 40 years. The focus
on organization merely breaks code down

into small manageable units – classes that con-
tain a number of (typically quite small) methods. In

a language such as C++ this is not a problem at all, as
the language itself has extensive control over the

cost of the method calls. In fact, with the inline
directive, the cost of method execution in C++ can

drop to zero. In Java, however, the default method
definition checks to see what object it is and calls the

appropriate method, which is equivalent to a virtual
function in C++. This involves overhead: the program

must first examine the object to determine its type,
select the appropriate method, and then call it. Calling a

method is quite slow compared to executing instructions
within a method. In fact, as my benchmarks show, a loop

that executes n times doing nothing but counting is 50 times
faster than one that calls a method that does nothing. (See the
benchmark on my Web site, www.righttrak.com/javaperfor-
mance/benchmarks.)

What is the cost of a method call and how can you reduce
it? A static method costs about three units of time on my
Pentium 4 PC, where a unit is defined by an empty counting
loop. A final method costs roughly the same, and an ordinary
nonfinal method is about three times as expensive. The con-
clusion is obvious: whenever possible, use the final or static
qualifiers on methods (in other words, if you don’t intend to
override the method, say so).

Let’s start by saying that if you want a program to run fast,
get JDK 1.4 and run it with optimization turned on:

java -server MyClass

The -server option scans the entire loaded program as it’s
being run, eliminating methods by inlining them, turning
methods into native assemblers, removing constant evalua-
tions from loops, and other optimizations. It improves per-
formance, often by a factor of 10 in CPU-intensive bits of
code. It might surprise you to think about optimizing pro-
grams at runtime, but considering that Java runs on different
machines, the only way to optimize for your particular
processor is at runtime.

This feature is new in 1.4. There’s a “bad feature” in 1.3 that
tends to invoke the JIT compiler lazily, often too late. If you

Java COM

46 AUGUST 2002

compile the following program and run it under 1.3, any code
in main is optimized, but code in f() is optimized only after it’s
called once:

public static void f() { ... }

public static void main(String args[]) {

f();

}

In this case, since f() is called only once, it’s obvious that
the compiler had better optimize f before executing it, or not
bother.

The compiler makes certain assumptions about what is
worth inlining based on the fact that inlining code can take
more memory if the code is big. If you have a big routine, it
won’t be inlined. This can be very unfortunate in some spe-
cialized cases, which is where human intelligence comes in.

Suppose you’re writing f(), which calls g(), which calls h().
You’re doing this just to break up the code and make it easier
to read. However, even though f is the only function that calls
g(), if g is big enough it won’t be inlined. It doesn’t matter if
there’s a big loop involved:

void f() { g(); }

void g() {

for (int i = 0; i < 100000000; i++)

...;

}

because the time it takes to perform the loop dwarfs the time
it takes to get in and out, and so the percentage cost of the

procedure call is tiny.
There is, however, a case to be made for

applying human intelligence to inlining
code. Frequently a method is large,

but the first line of the method is a
test that determines whether or not to

execute the rest. Consider a logging rou-
tine. If debug mode is on, it should write out. But

for all those cases where debug is false, why call the routine at
all? Here’s an example of this in action:

private static boolean debug;

In the first case, f7 calls the logging routine regardless of
the state of the debugging flag:

public static int f7(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

log(i);

}

return sum;

}

In the second case, f8 calls the logging routine only if
debug mode is on. At the cost of an extra statement every time
you call the log routine, this code runs 25% faster.

public static int f8(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

if (debug)

log2(i);

}

return sum;

}

Multithreading and Synchronization
Since Java is a multithreaded language, the synchronized

primitive is provided to make sure that multiple threads of
execution do not destroy objects. When entering a synchro-
nized method, it acquires a lock that’s associated with the
object and prevents any other synchronized method from
entering. Acquiring such a lock is a slow machine language
instruction. The result is that calling a synchronized method is
three times as slow as an ordinary method, which in turn is
three times as slow as a static or final method. The computer
must first check whether someone else already has the lock,
and if not, acquire the lock all in one atomic operation.

public synchronized void f() { ... }

Multithreading is a complex topic, and the reader is well
advised to read one of the many books on the topic for a full
understanding. However, a very quick overview of optimiza-
tion should begin with the observation that since acquiring
locks and managing them is a costly business, we should

avoid it unless there is some real reason for their use.
Furthermore, multithreading will only result in a gain of effi-
ciency if we can overcome the immediate loss of efficiency
that results from calling synchronized methods. In a great
many situations, multithreading is not called for, and the sim-
plest and best way to handle the situation is to say that the
object is not thread-safe, and that programmers should never
make two simultaneous calls to the same object.

On the other hand, if multithreading has a significant
advantage, the best way to achieve it, where possible, is to
have more than one object and give each thread its own
object. As perfect examples of this, consider IO streams in a
Web environment. While there may be many threads simul-
taneously writing Web pages, each one is writing to its own
Web page. In such cases, the IO stream for servlets could be
implemented as a fast, unsynchronized version of Print-
Stream.

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

ince Java is a multithreaded language,
the synchronized primitive is provided

to make sure that multiple threads of
execution do not destroy objects”“ S

47AUGUST 2002

Java COM

engenuilty
engenuility.com

Java COM

48 AUGUST 2002

Sometimes, however, there are applications (like a log)
where it’s vital that multiple threads be able to write to the
same object. In such cases, synchronization is vital for cor-
rectness. While we can add a new class to the library to sup-
port unthread-safe IO, we must always continue to support
thread-safe IO for those few cases where it’s important.

If you’re going to acquire a lock, do so only once. Planning
how locks are acquired and released is not only good opti-
mization practice, it’s worth really thinking over as this is one
of those tricky areas where badly thought-out designs are not
only slow, but often don’t work in very subtle, nonrepeatable
ways. These are the hardest possible situations to debug.
Because acquiring the lock means that no one else can enter,
synchronized critical sections should:
1. Be as short as possible
2. Not call other synchronized routines (i.e., do whatever

needs to be done in a single synchronized section if possi-
ble)

3. Never allow unsynchronized access to critical data
4. Never deadlock

Case Study
Simply removing all the synchronization from java.io

.PrintWriter and writing a class that is functionally equivalent
but not thread safe resulted in a 50% improvement in speed.
Class PrintWriter contains synchronized methods that call
other synchronized methods, in some cases three deep. The
long chains of method invocation before getting to any actual
code is a large part of what slows down IO.

Calling Native Methods
You might assume that if you really need speed, you can

resort to linking in some C++ code and call that for the ulti-
mate in performance. The answer may surprise you; it cer-
tainly surprised me. Even ignoring the obvious disadvantages
of using C++ – the lack of portability, requiring a shared library
to deploy an application, etc. – the simple fact is that calling a
native method is twice as slow as an ordinary method call.

Having looked a bit at the implementation of the JDK, I can
tell you that while it may be tweaked a bit, the reason is essen-
tially sound – to call a C++ routine, you must first make a
native mode call (that’s one) and then set up a call to the
underlying C++ routine; twice as much work, twice as much
time, right? And to communicate with anything in the Java
environment takes further calls as well, so the only way you’ll
see a significant speed advantage is by staying in the C++
world for a while. In short, native methods seem to be totally
outclassed at this point by a combination of increasingly good
optimization in the Java world and the somewhat inefficient
code involved in the communication between the two.

Creating Objects
As a C++ programmer originally, I assumed that the biggest

cost I was likely to find was the synchronized method call. I
was surprised – the slowest operation by far was the creation
of an object. In hindsight it makes perfect sense. Creating an
object requires the allocation of memory, including all the
overhead for identifying the class of the object, its lock, and
the amount of memory being used. After using the object for
a time and invoking methods, the garbage collector must
eventually free the memory that has been allocated. The act of
allocating the memory alone, even when optimized in JDK
1.4, is far more expensive than a synchronized method call.
The overriding rule in Java code optimization is simple: don’t
create unnecessary temporary objects.

In the following example, the first version, which creates

only a single object and repeatedly queries it, is 800ms versus
26,300ms, or more than 30 times faster than the second one,
which repeatedly re-creates the object. This is an extreme
example, of course, because what is being done is very simple
compared to the object creation, but it gives an idea of just
how costly object creation is.

public static int f10(int n) {

int sum = 0;

TempThing t = new TempThing(0);

for (int i = 0; i < n; i++)

sum += t.getV();

return sum;

}

public static int f11(int n) {

int sum = 0;

for (int i = 0; i < n; i++) {

TempThing t = new TempThing(0);

sum += t.getV();

}

return sum;

}

Case Study
While removing synchronization and streamlining the

code path of PrintWriter resulted in a factor of two improve-
ments in performance, eliminating the temporary string cre-
ated in printing an int resulted in a sixfold performance
improvement.

String Manipulation
Many programmers have seen the sequence:

String s = "a" + "b" + "c";

and know that StringBuffer is better:

StringBuffer b = new StringBuffer();

b.append("a").append("b").append("c");

This knowledge seems to break down after this point. If
you’re processing large strings in StringBuffers, don’t then
turn them back into strings to pass them to another routine
unless you’re worried about multithreading problems. As long
as you’re processing single threaded, you’re better off contin-
uing to append into the StringBuffer until you’re done. The
following routine:

public String getAsXML() {

StringBuffer b = new StringBuffer();

b.append(...);

return b.toString();

}

must make an unnecessary copy in order to turn the
StringBuffer into a string. Then, if the caller is going to append
more text, this string must be appended into yet another
StringBuffer. This is a big waste. Instead, try:

public void getAsXML(StringBuffer buf) {

buf.append(...);

}

where the caller allocates the StringBuffer and passes it to the
routine, which fills it. The caller can then continue processing.

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

49AUGUST 2002

Java COM

nsoftware
nsoftware.com

This approach has another advantage, namely that the caller
usually has a much better idea of the total size of the
StringBuffer at the end of processing. It is vastly more effi-
cient, if you know how many characters are involved, to preal-
locate them rather than allow the StringBuffer to start at the
default size of 16 and grow, which requires a lot of copying. For
example, if you know the eventual size of the string will be as
high as 2K, then:

StringBuffer buf = new StringBuffer(2048);

obj.getAsXML(buf);

will typically result in approximately 100% performance
improvement over the original string code. It’s far better to
overallocate than to underallocate and require a grow opera-
tion. Remember, this works only if the string in question is not
being assaulted by multiple threads.

Manipulating strings, even optimized ones, takes a fair
amount of work and code, even if the string length is one. If
you’re processing a single character, using a char is much
faster, so:

buf.append('\n');

is significantly faster than:

buf.append("\n");

Efficient Use of Lists
Java provides a fairly rich set of data structures. They’re not

all the same, and while they may work interchangeably, that
doesn’t mean they’re all equally good in all circumstances. To
build up a list in order, ArrayList is faster than LinkedList by a
factor of two. LinkedList is substantially slower because each

node requires the creation of an object. Vector is a
close second in speed; it’s slower because it’s a syn-

chronized data structure. However, in situations
where values are to be inserted in the middle of the

list (or worse still, the beginning), LinkedList is the
best by orders of magnitude since it does not have to
constantly copy elements to move them aside.

ArrayList v = new ArrayList(n);

for (int i = 0; i < n; i++)

v.add(new Integer(i));

return v.size();

While both Vector and ArrayList use a doubling algorithm
that will adaptively grab larger and larger chunks every time
the size is exceeded, each time they grow an enormous
expense is incurred. As with StringBuffer, it’s about twice as
fast to preallocate as much space as you’ll need than to grow

later, even if you overallocate.
Last, remembering that object allocation is the slowest activ-

ity of all, you can easily see that this list, which must create object
wrappers for each int, is vastly inefficient. The following code,
using a list class written just for int elements (see my Web site for
the code), runs a full four-and-a-half times faster than ArrayList.

IntArrayList a = new IntArrayList(n);

for (int i = 0; i < n; i++)

a.add(i);

For scanning through an existing list, ArrayList is the
fastest of the JDK list classes; getting an element from an array
is a trivial operation, so synchronization dominates the time.
Here, LinkedList can be monstrously slow if you use it incor-
rectly. Since LinkedList is not a random-access data structure,
calling get(i) means it must start from element 0 and scan for-
ward until it reaches position i. A loop that scans through the
entire list is therefore not an O(n) operation, but O(n2). For a
list of 100,000 elements, my computer performed the
ArrayList traversal in 3.25 milliseconds. LinkedList traversal
took an astounding 113,657 milliseconds, or 34,971 times
slower.

LinkedList l = l1;

for (int i = 0; i < n; i++)

l.get(i);

The correct way to code traversal through a LinkedList is to
use the iterator design pattern:

LinkedList l = l1;

for (Iterator i = l.listIterator(); i.hasNext();)

i.next();

The lesson to be learned here is that it pays to understand your
data structures well. Just choosing the right data structure for your
situation can pay enormous dividends. And using one incorrectly,
as in the case of LinkedList traversal, can be very costly.

Last, if you want to store a list of primitives, the best way
would be to have classes designed for the purpose, like
IntArrayList. No one wants to go to the expense of writing and
maintaining all permutations of lists for all the primitive data
types; this is one reason Java needs a high-quality template
facility like C++. That’s a topic for another day, but one that I
hope to revisit in a future article. For now, a friend and I are
proposing some primitive list classes to add to the Java library,
because when you do want a list of primitives, there’s no sub-
stitute for a decent data structure.

Maps
HashMap is quite a bit faster than the older Hashtable,

mostly by virtue of not being synchronized. However, the

Java COM

50 AUGUST 2002

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

ust choosing the right
data structure for your

situation can pay
enormous dividends”“ J

51AUGUST 2002

Java COM

actuate
www.actuate.com

Java COM

52 AUGUST 2002

algorithm used is still less than optimal. To analyze it further,
you have to look into HashMap’s source code, and know a bit
about hashing algorithms. In general, a hash algorithm is fast
because it “hashes” the key and turns it directly into the loca-
tion of the bin where the value is stored, making it an O(1)
operation. The problem comes when two different keys hap-
pen to hash to the same bin. Statistically, this happens fairly
often, and it’s the job of the writer of the HashMap to reduce it
as much as possible.

Collisions cannot be totally eliminated in the general case,
so the design of hash algorithms must allow for them.
Therefore, each bin in the HashMap is essentially a linked list
for all the keys and values that could hypothetically end up
there. This means that every time you add an element to a
HashMap, you’re once again creating an object that holds the
key, the value, and a reference to the next node in case any
more values happen to land in the same bin.

Object creation is the most expensive operation possible,
so I’ve tried a different approach and have on my site a couple
of experimental classes that perform twice as fast as HashMap
(FastHashMap) or four times as fast if your key is an int
(FastIntHashMap). They do, however, achieve part of their
spectacular speed by not checking the size each time a new
element is added, so you must allocate the right size table in
advance.

As with all other Java data structures, if you add too many
elements to a Hashtable or HashMap, they grow. This is the
worst thing you can do, since growing requires painfully rein-
serting every element. Hashing requires about 25–30% more
bins than there are elements for efficient operation. Always
preallocate what you think is the right size for your Hashtable,
be generous, and check at the end to be sure you were right
and that the table did not have to grow.

Last, because the hash algorithm for strings looks at every
character in the string, avoid hashing large strings if at all pos-
sible. The smaller the string, the faster the hash.

Strength Reduction
Turning slow machine language instructions into equiva-

lent but faster ones is traditionally the job of a peephole opti-
mizer in a compiler; the optimizer looks at a window of
instructions coming out of the code generator and makes
judicious substitutions. In the Java environment there are two
stages at which peephole optimizations can be done. One is
during compile time when the source code is turned into JVM
code; the other is when the code is run and the JIT turns JVM
code into a native assembler. The latter is the approach cho-
sen by Sun, because that way they can optimize code for the
particular processor running the code.

Having admitted that most strength reductions are things
compilers should do, if your compiler doesn’t do them (and Java
didn’t used to), then it’s up to you to do them yourself. In doing
so, there are a number of issues: Will the resulting code be as
simple as or simpler than the original? Gaining a little speed
while losing understandability is not a great bargain. Will the
resulting code be faster? Programmers often assume they’re
optimizing, when in fact they’re doing the reverse. The kind of
clock cycle counting is certainly better done by a compiler, with
knowledge of the target CPU and environment if at all possible.
The good news is JDK 1.4 now does some strength reduction.
It’s up to you to decide how much speed you need now.

First, what not to do. Multiplications by the constant power
of 2 are automatically converted to shifts by the computer:

x * 2 x << 1

x * 16 x << 4

More complex, but not worth it, are multiplications by
constants:

x * 10 (x << 3) + (x << 1)

Divisions are not supported at the moment, but will be
soon. If you need the speed right now, the speed of the divi-
sion itself is five or six times faster.

x / 2 x >> 1

A much more important strength reduction, and one that
the JIT is not likely to detect in the near future, also involves
division. Often, programmers want to go around a loop, but
do something different every n times. One standard trick is to
count and take the counter modulo n, as in the following
example:

for (int i = 0; i < 100000; i++)

if (i%10 == 9) {

// do something every tenth time

}

This is slow; the following is four to five times faster:

for (int i = 0, j = 10; i < 100000; i++,j--) {

if (j == 0) {

// do something every tenth time

j = 10; // restart the count

}

Similarly, if you have code in a loop like:

j = (j + 1) % n; // j should always end up between 0 and

n-1

it’s much faster to write:

if (++j == n)

j = 0;

In general, for any positive number x, x % n is equiv-
alent to x & (n-1) if n is a power of two. So x % 8 == x & 7
as long as x is positive. Using the & operator is a lot
faster.

Summary
All the performance enhancements in this article have

involved the application of simple techniques to make indi-
vidual sections of code faster. If you learn these tricks and
apply them everywhere as a matter of course, your code can
get significantly faster without a lot of effort. These tech-
niques, combined with JDK 1.4 and the next generation of Java
compilers, are going to take us within a hair’s breadth of being
as fast as a well-written C++ application – and most applica-
tions in C++ are not well written. The world will enjoy the
resulting crisp handling of the programs to come. Get out
there and write something great.

AUTHOR BIO
Dov Kruger is president of Right TRAK, Inc., a consulting and training company focusing on
Java, object-oriented, and Web-based technologies. He’s currently working on improving the
performance of dynamic Web pages with graphics, internationalization, and some of the Java
libraries.

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

dkruger@righttrak.com

53AUGUST 2002

Java COM

fiorano
www.fiorano.com

54 AUGUST 2002

jasonbriggs@sys-con.com

J 2 M E E D I T O R I A LO R

The Computer of Tomorrow
JASON R. BRIGGS J2ME EDITOR

H
om

e
J2

E
E

J2
SE

J2
M

E

J

J 2 M E I N D E X

At times, I wonder just how far short
the computer industry has fallen
of its promise of a few decades

ago. I’m not talking about the lofty ideal of
the computer of the future that science fic-
tion authors were predicting we’d be using
by now, such as machines capable of hold-
ing a proper conversation (or better yet,
capable of withering sarcasm in the face of
human stupidity), human-computer sym-
biosis, etc. Nor am I talking about retro
chic – the “style of the future” that artists
were drawing back in the ’50s – and that
Apple seems to have captured so well in a
lot of their products.

No, it’s interoperability that’s on my
mind.

My wife and I recently bought a house,
and while we haven’t moved in yet, she’s
already planning the color scheme for
every room, as well as 10 years of renova-
tions. I, on the other hand, have been
thinking about networking.

We both have laptops. I also have a
Linux server (currently sitting at my par-
ent’s house doing nothing), plus various
other bits and pieces of hardware (a print-
er, etc.).

Here’s where wishful thinking about
those “computers of the future” comes in.
I’d like to be able to plug any device into a
port in any room and have it all work
instantly without any messy configuration
or setup.

I know what you’re thinking, and it’s
probably along the lines of Jini, Bluetooth,
802.11, Home Powerline Networking, etc.,
etc. Certainly with one (or a combination
of) those technologies, I can approach the
idea of what I want. It certainly won’t be a
case of plugging it in and forgetting about
it, and that’s a shame.

I can see some of the reasons behind the
lack, of course. Home Networking hasn’t
exactly had worldwide penetration com-
pared to the Internet, for example. Only a
small percentage of the population has wired

everything and the doghouse together (or set
up a wireless backbone, for that matter).

The expense is another good reason
and I’ll give you an example: a couple of
years ago I purchased a USB scanner from
a well-known computer and peripherals
conglomerate. At the time I was primarily
running Windows 98 SE and had no prob-
lem installing the device. Go forward one
iteration of Windows (to the nightmarish
Millennium Edition), and there seems to
be no way to get that scanner to work any-
more. That’s just one version of Windows,
so I’m guessing my chances of it running
on Linux are somewhere between nil and
nada. As for “just plugging it straight into
the network…,” forget about it.

Obviously, in this case the manufactur-
er has offloaded a lot of the scanner func-
tionality onto the computer (in the form of
one gung ho 38M driver installation, I
might add) to save costs – so really, it’s my
own fault for buying cheap. What if the
scanner had its own small processor, stor-
age, network card, and, possibly, Web serv-
er (to access the pictures)? While it sudden-
ly becomes a network device I can plug
anywhere in my home network, it also
becomes a darn sight more expensive.
Then again, with something like Dallas
Semiconductor’s TINI board (Java-
enabled) which, I seem to recall hearing,
costs around U.S.$50, it doesn’t seem that
much more expensive to add some of
those features (see www.ibutton.com/TINI
/index.html for more info).

Just think of the advantages of having
all these network-ready (and why not Java-
enabled) devices. How about a (water-
proof?) PDA in the kitchen with a
Bluetooth connection to the (wired) net-
work port for looking up recipes. Or intelli-
gent speakers – plugged into any network
port, they’ll have access to the house’s
music repository. Taking it one step fur-
ther, I want to be able to plug a digital cam-
era into any port in my house and have the

AUTHOR BIO
Jason R. Briggs is a Java analyst programmer and – sometimes – architect. He’s been officially

developing in Java for almost four years, “unofficially for five.”

Java COM

54

56

60

photos automatically upload onto a spe-
cially designated shared resource ready
for access. Or how about a DVD recorder
that asks any connected devices what
critical information they need backed up,
then automatically does it and sends out a
“distress” signal (e-mail, phone call, SMS
message) when it needs a replacement
disk.

These are the kinds of things that actu-
ally make computers more convenient,
less of a pain for the ordinary person to
use – and come close to that promise of
yesteryear.

The Computer of
Tomorrow

How far short has
the computer industry fallen of

its promise of a few decades
ago? I’m not talking about the

computer of the future that sci-
fi authors were predicting we’d

be using by now, nor about
retro chic. No, it’s interoperabil-

ity that’s on my mind.
by Jason R. Briggs

Does J2ME Have
Its Legs Yet?

Sun has poured a
lot of resources into the J2ME
platform, recognizing that the
next battleground will be the
ubiquitous consumer device.
Whether J2ME can make the

huge impact that Sun hopes for
is still an open question.

by Matthew Ferris

Wireless J2ME
Applications with Java

and Bluetooth
This article shows

how to write wireless J2ME
applications using Bluetooth. If

you’ve heard of Bluetooth,
you’ve certainly heard of

802.11b (the wireless LAN pro-
tocol) – both of which are wire-
less communication protocols.

by Bruce Hopkins

55AUGUST 2002

inetsoft
www.inetsoft.com

Java COM

Java COM

56 AUGUST 2002

Does J2ME Have Its Legs Yet?

P L A T F O R M S U P P O R T

All the major OEMs have announced
big plans for J2ME, and although the
sluggish economy of late can be factored
in as one reason for J2ME’s slow growth,
there are several other contributing fac-
tors. I’d like to offer some suggestions
about what’s wrong and how to fix it.

1. Supply and demand disconnect
It’s been noted that although most of

the major financial firms have rolled out
wireless products to allow their cus-
tomers to trade using their PDAs or
other consumer devices, demand from
customers has been almost nonexistent.
Vendors’ attempts to drive demand is
not new – major software manufacturers
have been doing it for years. Many peo-
ple probably have enough AOL disks to
tile their bathroom.

In the case of financial institutions,
it’s particularly ironic. For years the sage
advice has been to get in the market and
stay in, don’t try to time it. Yet if I have to
execute a trade in the cab, it’s a sure bet
I’m a market timer.

New technologies typically have a
first-generation incarnation centered on
games, as is the case with J2ME. Yet,
more than one company that focused
on this market has already gone belly-
up. Once it’s demonstrated that the
functionality for more compelling appli-
cations exists, the games become some-
what of a yawn. While the PS2 and
Nintendo games certainly have mileage

left in them, there are two important dif-
ferences. These devices are built specifi-
cally for gaming, and while they’re
adding other functionality, the core
functionality remains just that. In addi-
tion, it will be a long time before
portable consumer devices have any-
where near the fire power to present
graphics or redraw rates that cause sim-
ilar jaw-dropping reactions. (Nor have I
heard of any OEMs planning a phone
with a 27-inch screen anytime soon.) I’m
not saying that you can’t make money
on games, simply that a mature market
for J2ME will mean far more than just
games.

It’s time that vendors who are
focused on J2ME get beyond games and
on to those applications that provide
unique value precisely because they are
for the phone.

2. Carrier reticence
Even though carriers and vendors

may know what consumers want and
have the ability to provide it, doing it is
quite another matter. For years, carriers
have thought that their network was
everything. They’ve spent lots of capital
building these networks, and anything
or anyone that could possibly cause a
disruption was not an ally but a threat –
so developers are viewed in the eyes of
some carriers. They don’t want applica-
tions sucking up bandwidth from pay-
ing (phone) customers.

Nextel was the first carrier in North
America to support J2ME, yet they
haven’t exactly smoothed the road for
developers to get their apps out there in
the hands of the public. To be fair, there
are concerns that need to be addressed.
An application that causes grief for a
phone customer may end up costing the
carrier valuable support resources.
However, the way around this has been
to subject developers to high entry bar-
riers in order to get their applications
out. Nextel has a hefty certification fee
that you must pay to have an applica-
tion checked for any rogue code
(although assessing the fee is at the dis-
cretion of Nextel). However, J2ME’s
security model is such that it’s very diffi-
cult to do anything that would impair
the hardware in any major way. Indeed,
functionality outside of J2ME is not
accessible to a J2ME application. By
requiring some basic compliance, such
as timeout values for connections, mis-
use of the network could be bypassed
quite easily.

The other mindset is that end users
will want to buy applications for their
devices. Carriers need to realize that
selling applications as software is a
dead-end business. They’ve been pro-
viding voice service for years; why can’t
they use the same model for applica-
tions and treat them as services? The
example of NTT DoCoMo in Japan is
quite compelling – their service is

WRITTEN BY
MATTHEW FERRIS

Sun has poured a lot of resources into the Java 2 Micro
Edition platform, recognizing that the next battleground will be
the ubiquitous consumer device. Whether J2ME can make the
huge impact that Sun (and the developer community) hopes for is
still an open question, as the current rate of adoption has been
underwhelming thus far.

How to take advantage of mobile
device programming

H
om

e
J2

E
E

J2
SE

J2
M

E

57AUGUST 2002

Java COM

sitraka
www.sitraka.com

Java COM

58 AUGUST 2002

P L A T F O R M S U P P O R T

structured just that way. If a user
wants to access an application, he or
she pays a few yen per minute for it.
The key difference is that they treat
this as a service, rather than seeing
themselves as software vendors. NTT
regards the network as a conduit for
the service, not the service itself. As a
result, their pattern of thinking is
completely different from that of car-
riers in North America.

Competition is good, and it will be
quite interesting to see what happens
when Sprint enters the fray later this
year with their J2ME support. We can
hope that it will be a boon for the devel-

oper community as well as for more
widespread use of J2ME.

3. Location-based services
It’s been said that the killer app for

phones is the Short Message Service
(SMS). This may be the case at present,
but even SMS is not unique to phones.
Using Instant Messaging on the desktop
is pretty much the same thing, albeit
from a fixed location. What distinguish-
es location-based services for the phone
is that it’s unique to the device. If I’m at
a certain corner of the city and want to
know where the nearest post office is, or
where the nearest outlet to purchase

concert tickets may be, it’s a huge con-
venience if my phone can determine
where I am and direct me to my goal.

These services do exist, but there’s
simply no API available for the J2ME
developer to get at them. The phone
knows where it is all the time, at least
within a certain triangle of cell towers.
By providing this information to the
programmer, the carriers would be
doing a huge service to their customer
base. Location-based services could be
the thing that persuades consumers to
buy a particular phone model, or to sign
on with a given carrier simply because
they have the most compelling services.

There are significant challenges to
the widespread adoption of J2ME. Yet
Java’s position as not simply a program-
ming language makes it uniquely posi-
tioned to take advantage of mobile
device programming. A phone or PDA
running Java becomes not only a con-
venient piece of hardware, but a node in
a network that takes full advantage of the
entire Java environment. What is needed
is closer cooperation between the carri-
ers and the developer community in
order to bring applications to market
that will be a win for both sides. H

om
e

J2
E

E
J2

SE
J2

M
E

mferris@objectsinc.com

AUTHOR BIO
Matthew Ferris is

the mid-west editor
of Wireless
Business &

Technology and the
president of the

Chicago Wireless
Developer User

Group.

app dev
www.appdev.com

What distinguishes
location-based services
for the phone is that it’s

unique to the device

“

”

59AUGUST 2002

Java COM

zerog
www.zerog.com

Java COM

60 AUGUST 2002

First, we’ll look at the Bluetooth protocol, then compare it
to another common wireless technology: 802.11b. Next, we’ll
look at the anatomy of a Java Bluetooth–enabled device and
examine its components in detail. Later on, we’ll dive into the
details and explain the purpose of the Bluetooth stack and
profiles (not to be confused with J2ME profiles). Finally, we’ll
wrap up by providing some example code that shows how to
initialize your Bluetooth stack according to the Java APIs for
Bluetooth (JSR-821.0a).

What Is Bluetooth?
Simply stated, Bluetooth is a wireless communication pro-

tocol that you’d use to connect two or more Bluetooth-capa-
ble devices. In this sense it’s like any other communication
protocol, such as HTTP, FTP, SMTP, or IMAP. Bluetooth is also
similar to these protocols in that it has a client/server archi-
tecture. In Bluetooth, the one who initiates the connection is

master (the client), and the one who receives the connection
(the server) is the slave. However, what makes Bluetooth so
special is that it’s wireless. You can connect two Bluetooth
devices to share data or transfer files without using messy
cables.

Bluetooth vs 802.11b
If you’ve heard of Bluetooth, you’ve certainly heard of

802.11b (the wireless LAN protocol) – both of which are wireless
communication protocols. Bluetooth and 802.11b are geared to
accomplish two different goals, although the technologies
operate in the same frequency band: 2.4GHz. The question
many people ask is: If both technologies operate at the same
frequency, won’t they interfere when placed in range with each
other? Not so, according to a Forrester Research study in 2001.

Another common question: If they both do the same thing,
won’t one eventually replace the other? The key point is that

H
om

e
J2

E
E

J2
SE

J2
M

E

61AUGUST 2002

Java COM

altova
www.altova.com

Java COM

they’re not intended for the same purpose. Bluetooth will
replace 802.11b (or vice versa) when, for example, the
microwave replaces the conventional oven.

Microwave vs Oven
The oven is great at cooking, but bad at heating food quick-

ly – and it’s also pretty expensive. Conversely, the microwave is
cheap and great at heating food quickly, but it’s bad at cook-
ing. Both devices have their trade-offs, although either could
be used for heating and cooking. How does all this compare to
wireless communication?

It’s pretty simple. Wireless LAN (802.11b) is good at connect-
ing two relatively large devices with lots of power at high speeds.

A good use of the technology is
connecting two laptops at

11Mb/s. Wireless LAN is also
good at connecting those
devices at long distances
(up to 300 ft).

Bluetooth is ideal if you want
to connect small devices at slower

speeds (1Mb/s) and within a short-
er range (30 ft.). Why slower speeds?

Isn’t faster better? Isn’t long-range
communication a good thing? Not

necessarily, especially when you con-
sider the memory and power con-

straints on smaller devices. Faster con-
nection speeds and longer communica-

tion ranges equate to larger power require-
ments. Why use an 11Mb/s connection if

you’re transferring a 50K file between two PDAs?
One of Bluetooth’s strengths is its ability to function as a

cable replacement technology. If you have multiple peripher-
als connected to your computer using RS-232 or USB, then
Bluetooth is the ideal solution if you want to use those devices
wirelessly. It’s difficult (if not impossible) to connect comput-
er peripherals using 802.11b technology (except for printers).
Bluetooth even has a built-in capability for wireless audio
communication. To put things succinctly: Bluetooth will never
replace 802.11b because it’s bad for:
• Large file transfers between devices
• Long-range communication

On the other hand, 802.11b will never replace Bluetooth
because:
• It can’t be used to communicate to peripherals.
• It requires too much power for small devices.
• It’s overkill for small data transfers.
• It wasn’t designed for voice communication.

For the moment in the wireless communications arena,
there’s no technology that’s best suited for every possible
application. Either Bluetooth or 802.11b can be utilized for
wireless communication between computers. Both have their
place in the market, and both can perform remarkably well in
their niches.

Bluetooth Specification
For Bluetooth devices to communicate properly, they need

to conform to the Bluetooth Specification. This specification,
like any other spec, defines the standard that a Bluetooth
device should adhere to, as well as rules that need to be
enforced when communicating. You can download the speci-
fication documents from www.bluetooth.com.

Java Bluetooth Application Anatomy
Let’s look at the anatomy of a Java Bluetooth application.

Figure 1, section A, shows a Bluetooth-enabled phone that
includes the CLDC MIDP platform; section B contains the
anatomy of the device shown in section A. The bottom layer of
the diagram in section B represents the actual Bluetooth
device that sends out your voice and data over the air: the
Bluetooth radio. Section A shows the Bluetooth device as a
peripheral, but it could easily be integrated into the device by

the OEM. Bluetooth radios come in many shapes and sizes;
Figure 2 shows the popular Bluetooth radio made by 3Com.
3Com also makes a handy network browser with their
Bluetooth device (see Figure 3).

The Bluetooth Protocol Stack
The next essential component of a Java Bluetooth applica-

tion is the Bluetooth stack, (again, see Figure 1, section B). The
Bluetooth stack is the software layer with direct access to the
Bluetooth radio as well as control over such things as device
settings, communication parameters, and power levels. The
stack consists of many layers, and each layer has a specific task

AUGUST 200262

strengths is its ability to function as a
cable replacement technology”

FIGURE 1 Bluetooth-enabled phone

H
om

e
J2

E
E

J2
SE

J2
M

E

Bluetooth’s
“One of

63AUGUST 2002

Java COM

cita
www.cita.com

Java COM

in the overall Bluetooth device (see Figure 4). The Bluetooth
device manufacturer is not required to use all the layers, so
let’s cover the main ones that should be in most Bluetooth
devices.
• Host Controller Interface (HCI): The interface between the

radio and the host computer
• Logical Link Control and Adaptation Protocol (L2CAP): The

multiplexer of all data passing through the unit; audio sig-
nals, however, have direct access to the HCI

• Service Discovery Protocol (SDP): Used to find services on
remote Bluetooth devices

• RFCOMM: Widely known as the virtual serial port protocol
• OBEX: Object exchange protocol

Bluetooth Profiles
The next level in Figure 1, section B, is Bluetooth profiles.

They were created to allow different Bluetooth devices to inter-
operate. For instance, let’s say you own a Bluetooth-enabled
PDA and a Bluetooth-enabled wireless phone. Both devices
have Bluetooth stacks. How can you tell if those two devices
will allow you to synchronize the phone lists between each
one? How will you know if you can send a phone number from
the PDA to the phone? And, most important, how can you
determine if these devices will allow you to browse the
Internet on the PDA using the phone as a wireless modem?

A Bluetooth profile is a designed set of functionality for
Bluetooth devices. For instance, using the examples listed above,
the phone and the PDA must both support the Synchronization
Profile in order to synchronize data between themselves. To send
object data like a .vcf from the PDA to the phone, both devices
need to have the Object Push Profile implemented. Finally, the
PDA and the wireless phone must both support the Dialup
Networking Profile in order for the PDA to wirelessly browse the
Internet from the phone. If you want your Bluetooth-enabled

devices to interact, having a Bluetooth stack is not good
enough: they need to conform to a particular profile.

Bluetooth Profiles vs J2ME Profiles
Do not confuse Bluetooth profiles with

J2ME profiles. J2ME profiles are a set of Java
classes that extend the functionality of a J2ME
configuration. For example, both the PDA and

MID profiles are a set of Java classes that extend
the functionality of the Connected Limited Device

Configuration.
A Bluetooth profile can be implemented in

any language and on any platform because
it refers to a defined set of functionality

for a Bluetooth-enabled device. So
the Object Push Profile can be

implemented on a Palm OS PDA
in C++ as well as on a Bluetooth-
enabled printer in Assembler;

64

FIGURE 2 Bluetooth radio

devices to interact, having a Bluetooth
stack is not good enough: they need to

conform to a particular profile”

H
om

e
J2

E
E

J2
SE

J2
M

E

Bluetooth-enabled
“If you want your

AUGUST 2002

65AUGUST 2002

Java COM

qualcomm
qualcomm.com

it’s just a defined set of functionality.
The next two layers of software in Figure 1, section B, are

the KVM and the Java Bluetooth API libraries. With J2ME and
the standard Java Bluetooth implementation, you have direct
access to the profiles and the stack of your Bluetooth device.
The Java Bluetooth API (JSR-82) works with any Java platform
that supports the Generic Connection Framework (GCF).
Unfortunately, that means you can’t use J2SE with the official
Java Bluetooth API. Hopefully, the GCF will be incorporated
into JDK 1.5. Until then, you’ll have to use nonstandard
libraries if you want to write Java Bluetooth code for desktop
applications. The last layer in Figure 1, section B, is your appli-
cation code, the wireless killer app that will make you famous.

Java Bluetooth Application Concepts
The basic concepts of any Bluetooth application (Java or

otherwise) consist of the following components:
• Stack initialization
• Device management
• Device discovery
• Service discovery
• Service registration
• Communication

The Java Bluetooth Specification adds a special component
to the mix called the Bluetooth Control Center (BCC), which is
outside the scope of this article.

Stack Initialization
Before you can do anything, you need to initialize your

stack. Remember, the stack is the piece of software that con-
trols your Bluetooth device. Stack initialization can consist of a
number of things, but its main purpose is to get the Bluetooth
device ready to start wireless communication. Every vendor
handles stack initialization differently; Listing 1 shows how to
initialize the stack using the Atinav Java Bluetooth SDK.

Summary
Hopefully, this article has stimulated your interest in applica-

tion development with Java and Bluetooth. Now that the prelim-
inaries are out of the way, in Part 2 we can dive into more appli-
cation code that will show you how to wirelessly communicate
between two Java Bluetooth–enabled devices. Don’t worry if you
don’t have any Bluetooth equipment yet; I’ll also show where and
how to obtain the hardware and software you’ll need.

AUTHOR BIO
Bruce Hopkins is a senior Java consultant at Great Lakes Technologies Group in Southfield,
MI. He has worked with Java for over six years, and has researched in wireless networking for
four. Bruce is the coauthor of an upcoming book entitled Java and Bluetooth by Apress
(November 2002).

Java COM

javaspaces@comcast.net

import javax.bluetooth.*;
import javax.microedition.io.*;
import com.atinav.bcc.*;

public class WirelessDevice implements DiscoveryListener {

LocalDevice localDevice = null;

public WirelessDevice (){
//setting the port number using Atinav's BCC
BCC.setPortName("COM1");

//setting the baud rate using Atinav's BCC
BCC.setBaudRate(57600);

//connectable mode using Atinav's BCC
BCC.setConnectable(true);

//Set discoverable mode using Atinav's BCC
BCC.setDiscoverable(DiscoveryAgent.GIAC);

try{
localDevice = LocalDevice.getLocalDevice();
}
catch (BluetoothStateException exp) {
}

// implementation of methods in DiscoveryListener class
// of javax.bluetooth goes here

// now do some work
}
}

Listing 1

66 AUGUST 2002

FIGURE 3 3Com network browser

FIGURE 4 Bluetooth stack architecture

H
om

e
J2

E
E

J2
SE

J2
M

E
“Stack initialization can

consist of a number of
things, but its main purpose

is to get the

device ready to start
wireless communication”

Bluetooth

67AUGUST 2002

Java COM

sprint
www.sprint.com

Java COM

68 AUGUST 2002

It takes more than a group of keen
developers coding like mad to create a
software system that meets require-

ments yet is robust to change. As new
requirements are discovered, new code
must be written and existing code main-
tained. Without careful consideration of
code structure, packaging, and compo-
nent dependencies, a large system can
quickly turn into a “big ball of mud.”

Managing dependencies between
components becomes critical if a soft-
ware team is to maintain the level of
agility required in today’s environment,
where customers are demanding
increasingly complex business systems
delivered faster and cheaper. If compo-
nent and package dependencies are
not well managed, the code base
becomes fragile and unmaintainable, a
common cause of a software project
failure.

Currently, tool support to help
developers and architects prevent sys-
tem degradation is poor. The type of
support required is where the feature set
of most CASE tools stops. Luckily for us a
new breed of tool is now available –
Small Worlds.

Product Description
Small Worlds provides insight into the

structure of Java or C++ software systems
through a variety of innovative visual mod-

els and statistics. These include views for
managing component and package depend-

encies, tracking the effects of change, system
coherency, and summary reports. The views
help identify problem areas of the code that
may need system-level refactoring.

There’s also a plug-in API that allows inte-
gration into other tools (Forte being the first),
and several export options that save visual
representations of the system in GIF or HTML
format.

Small Worlds supports three modeling
notations, or “skins”: UML, Small Worlds, and
Global. The UML skin does what you would
expect. The Small Worlds skin focuses on the
code “flow” rather than the containment
hierarchy (i.e., the direction of change rather
than associations). The Global skin removes
visual decorations to simplify complex dia-
grams.

The Review
To see how Small Worlds handles a large

system, I decided to import the source code
from my current project – a J2EE-based appli-
cation with 230,000 lines of Java code in 1,320
files. On my modest laptop it took three min-
utes for the compiled code to be imported

and then another two for the views to be cre-
ated.

Reading through the informative Small
Worlds user manual pays off! There are so
many features and ways information is pre-
sented that you can easily lose sight of what
you need to accomplish. There is a big “wow”
factor with this tool, which makes it easy to
get sidetracked. Therefore, it’s very important
that you have a clear understanding of the
questions you want answered before you start
navigating though your code.

The heart of Small Worlds is the Explorer
window that presents a visual representation
of system components; convenient naviga-
tion between components; and a set of fine-
grained filter controls to hide abstractions,
implementation, different kinds of depend-
encies (uses, extends), packages, and classes.
Changing to the Small Worlds skin provides a
view that illustrates the flow of the code,
which is useful for depicting the effects of
change.

Apart from the Explorer, the feature I was
most eager to look at was the summary
report. There I was told that our system was
98% stable, but that there were problem
areas (no surprise there), two possibly seri-
ous. The first is a Local Hub, a component
that has many immediate dependencies and
dependents. The component in question was
one I suspected was a problem, and now I
had evidence. Drilling into the “What If”
view immediately demonstrated the rippling
effect this component causes when modi-
fied. Lowering the threshold of hub depend-
encies by using the “Show run play” option
exposed other hubs I would have to deal with
next.

The next problem I investigated was a tan-
gle, a cyclic loop between components.
Nothing good ever comes from cyclic depend-
encies, especially if they’re between classes.
Drilling into the Explorer view showed me
that the tangle was package-based and need-
ed investigating (see Figure 1).

Viewing the details of the tangle exposed
24 loops that could be broken. Each loop has
a weight associated with it that suggests if the
dependency is a weak or strong link. With this
information and the powerful “What If” fea-
ture, I can make educated recommendations
to the development team as to how to make
this section of the code more robust to
change.

Summary
There is no other tool on the market that

deals with the complexity of managing com-
ponent dependencies as completely as Small
Worlds. You can reverse-engineer class dia-
grams in many visual UML tools, and even

info
REVIEWED BY DALE CHURCHETT dale.churchett@salion.com

Small
Worlds

L
ab

s

J2
SE

H
om

e
J2

E
E

J2
M

E
JDJ Labs

P R O D U C T R E V I E W

by Information Laboratory, Inc.

1.5
Information Laboratory, Inc.
E-mail: info@thesmallworlds.com
Web: www.thesmallworlds.com
Phone: 917 494-0840

Specifications
Platforms: Java 1.3 and 1.4 applica-
tions on Windows 98, NT, 2000, and
XP; Linux; Solaris; and any Java-
enabled platform
Pricing: Small Worlds Analyzer
Edition for Java is $1,750. Small
Worlds Visualizer Edition for Java is
$750

Test Platforms
Computer: Dell Inspiron Laptop 7500
Processors: 400MHz Intel, Red Hat
Linux 7.1 Dual 800MHz Intel
Memory: 128MB RAM, 512MB RAM
Platform: Windows 2000

P R O D U C T R E V I E W

purchase some plug-ins for Rational Rose, but none provide a
feature set anywhere close to that of Small Worlds.

To take full advantage of the insights provided by the tool
and apply them to a large software system, you need an expert
user and a strong individual who has the commitment of the
entire development organization. However, novice or interme-
diate-level developers may take advantage of the Visualizer
edition that removes the analysis tools and concentrates on
navigating through the system structure. For example, the
“Random explore all” feature from the Explorer is a great way
for new developers to get a feel for the system.

I found this to be an exciting tool and one that I’ve already
used to good effect. The ROI is somewhat intangible unless
you’re into tracking metrics in your development process,
but Small Worlds can help with that too. I do have some
minor usability issues with the tool, and the user manual
bundled with the installation was not current, but none of
this prevents me from highly recommending Small Worlds to
others.

References
• Foote, B., and Yoder, J. (1999). “Big Ball Of Mud.”

Department of Computer Science, University of Illinois at
Urbana-Champaign.

• Churchett, D., and Burhdorf, R. (2002). “The Salion
Development Approach: Post Iteration Inspections for
Refactoring (PIIR).” The Rational Edge.

Small Worlds Snapshot
Target Audience: Architects, component developers, test
engineers
Level: Medium to expert
Pros:
• Concentrates on being an analysis tool, not an IDE
• Works well out of the box
• Provides insights not currently available with existing

tools in one unified solution
• Great graphical representation offering visual clues to

system structure
• Good context-sensitive help
Cons:
• The .avi tutorial did not work
• The Windows batch script to increase heap size did not

work
• Potentially steep learning curve/high barrier to entry for

Analyzer Edition
• Would need to be installed into the development process

to track progress over time
• User manual not in sync with installed version, but good

enough

L
abs

J2SE
H

om
e

J2E
E

J2M
E

FIGURE 1 Explorer view

Editor’s Note:
Since this review was
written a new version
of Small Worlds has
been released, version
2.0. The users manual
has also been updated.

Java COM

70 AUGUST 2002

While I wandered, head
down, among the detritus
of the post dot–com era, a

new world order was forming. When I
looked up, I found the technical world
rallying under a new banner – Web
services. Savior or hype? I had to know.
What better place to learn than the
world’s largest Web services event? So
off I went to SYS-CON’s Web Services
Edge 2002 East - International Web
Services Conference & Expo. While this
was also the JDJEdge and XML Edge
Expos, the main thrust was Web servic-
es. The keynotes all centered on Web
services and most of the Java and XML

seminars also had a Web services tilt.
In addition to an expo floor with

dozens of vendors offering products
and services either supporting Web
services or claiming actually to enable
them, there were 60 hour-long semi-
nars divided among five tracks – Java,
Web Services, XML, IT Strategy, and
.NET. On top of all this, Sun ran six day-
long courses from their Java University

Program.
The Monday was dedicated solely to

Java University. I took the “Web
Component Developer: Certification
Fast Path” course about servlet and JSP

technology. Any code-level course
where you don’t get to write code is at a
disadvantage. But, for what it was, I
found the course very useful. It’s stated
goal was to cover the material that’s
required on the certification exam and
give pointers for further study. It met

this goal admirably, and
clarified, for me, a num-
ber of issues I was
unclear on in these tech-
nologies.

Among the tech-
nologies that had passed
me by was XML. Sure,
I’ve dabbled in it here
and there, and edited
my deployment descrip-
tor files, but I never did
anything meaty with it.

So Tuesday found me in the day-long
“Developing Solutions Using Java
Technology and XML” course, present-
ed by Todd Greanier of Compass
Technologies. This course was fantastic.
It started with a very thorough XML
primer, which was exactly what I need-
ed. Then it detailed which Java tech-
nologies are available for use with XML.
Overall, I was very impressed with this
course and its presentation.

The trade-off for taking this XML
course was that I missed the first day of
the expo, including the keynotes and all
the seminars. Initially, I was a bit con-

cerned about this, but unless day one
was very different than the next two, I
don’t believe I missed too much. While I
learned a lot of specific things on the
Wednesday and Thursday of the expo, a

common thread ran through the
keynotes and seminars. Summed up, it
might read like this: Web services holds
a lot of promise, but there are vast areas
that remain undefined. I’m getting a lit-
tle ahead of myself here, so bear with
me awhile and we’ll come back to this
point.

My original question was: Is the
concept of Web services just hype? The
simple fact that this conference existed
inclined me to believe that there had to
be something more. The dozens of ven-
dors I mentioned earlier spent big
money developing supporting prod-
ucts. While it is possible that they are
merely chasing the hype machine, I
sense otherwise. Please don’t get me
wrong. I’m in no position to declare
Web services the be-all and end-all. But
there is something there.

Eric Newcomer of IONA gave a very
powerful keynote on Wednesday enti-
tled, “Web Services: Integration
Technology for the 21st Century.” He
led with the statement that there are
currently too many definitions of pre-
cisely what Web services is. While this
may be strictly true, a fairly standard
definition emerged during Newcomer’s
speech and in all the other talks I
attended. Web services deals with the
space between applications. It is a ser-
vice-oriented architecture using XML
and XML-based standards to identify,

R
ep

or
t

J2
SE

H
om

e
J2

E
E

J2
M

E

Show Report
WRITTEN BY STEVEN BERKOWITZ

AUTHOR BIO
Steven Berkowitz has done

development and project
management for Fortune
100 companies, startups,

and nonprofit organizations.

Java COM

“I took the ‘Web Component Developer:
Certification Fast Path’ course...It met its goal
admirably, and clarified, for me, a number of

issues I was unclear on in these technologies”

Java COM

71AUGUST 2002

Java COM

R
eport

describe, define, and execute business
processes. Newcomer’s holy grail is the
built-on-the-fly business applications
assembled from pluggable Web services
sitting out there on the Web ready to go.

Now, this new world of interoper-
ability will have monetary benefits.
Without increased ROI, why would our
bosses want to spend money on this
stuff? Make no mistake, they will be
spending the money. A slide from the
“Practical Experiences with Web
Services and J2EE” seminar quotes sur-
veys from groups like Gartner, Jupiter
Media Metrix, and InfoWorld showing
that money is heading this way.

One of the primary cost savings with
Web services, according to Newcomer,
is that it will deskill programmers. We
won’t need mAd SkILz to integrate
applications anymore. Business users
can just pick from a menu of function-
ality and, voilà, a new application. We
as developers may bristle at that; you
may say that as a developer myself, I’m
in outraged denial. But, this review will
look at the undefined portions of Web
services and the competing standards
under development that are meant to
address them. Look at that and then tell
me how your accounting department is
going to make their own applications
Web services–enabled. We will still be
needed. There really is no alternative.

Another problem with Newcomer’s
pluggable application vision is that we
are nowhere near it. When talking about
companies already using Web services,
speakers repeatedly coughed up phras-

es like “most” and “90%” and “the
vast majority” in front of “are using

it for internal integration rather
than exposing business

processes to their partners.”
That this is the case

makes sense if you look
at what Web services

covers and, more
tellingly, what it

does not.

What everybody seems to agree on is
that Web services is currently defined by
three core standards: the Simple Object
Access Protocol (SOAP), the Web Services
Description Language (WSDL) and
Universal Discovery, Description and
Integration (UDDI). WSDL
is based on XML Schema
and a WSDL document is
an XML document that
defines and describes a
service. A SOAP message is
an XML document with

the payload, delivering the data for the
service to operate on. And UDDI is the
yellow pages of Web services. It tells us
where to find the services we need. While
SOAP and WSDL are not yet W3C stan-
dards, they have become de facto stan-
dards and soon will be official.

Sounds great. It is, in a lot of ways.
Remember that most companies are still
using Web services for internal integration
projects. The reality is, most enterprises
have disparate systems – legacy, J2EE,
Microsoft – all of which need to speak with
each other. If you give them each a way to
write SOAP messages for their outgoing
information and read SOAP messages for

incoming data, you’ve
made them talk with each
other. There is value in that.

However, adoption of
interenterprise Web serv-
ices is hampered when
you consider what is not defined by
Web services. Little things like security,
workflow, and transaction support. Web

services currently does not address
these issues in a standard way. Anne

Thomas Manes of Systinet gave a
talk on “Developments in Web

Services Standards.” Manes
said that Web services

needs to address the fol-
lowing issues before it

can be truly ready

for prime time: management, security,
context, delivery, workflow, choreogra-
phy, service agreements, service char-
acters, discovering, business system
registration, and standards and con-
ventions. That’s a pretty hefty list of

things in the way of
widespread adoption.
There are standards
bodies addressing these
things: W3C, Web
Services Interoperability

Organization (WS-I), and Organization
for the Advancement of Structured
Information Systems (OASIS) are just
three. OASIS has 30 tech committees
alone working on Web services issues.

Manes wasn’t the only one to make the
point about competing standards. Even
“Practical Experiences with Web Services
and J2EE,” by Hugh Grant of Cape Clear,
stressed these issues. The J2EE thrust of
that hour was that you can translate your
EJBs into Web services using WSDL to
describe them, and a Façade pattern to
cover multiple beans if they combine to a
single service. Beyond that, his talk cen-
tered around the standards, which I found

very telling.
I can give you the alpha-

bet soup of proposed stan-
dards, but I think that

would cloud the real issue. You have to
realize that many of the standards under
development compete with one another.
As we know, multiple standards to
address a single issue mean there is no
standardization. This is a very risky place
to be, because it allows vendors to fill in
the gaps. This is where Web services is
now. There are too many holes, and ven-
dors, such as Actional, SilverStream, and
Sonic, all have products that will come in
and fill many of those gaps. Many other

J2SE
H

om
e

J2E
E

J2M
E

Java COM

72 AUGUST 2002

vendors offer more tailored solutions,
some addressing security, others work-
flow.

Phillip Merrick of webMethods gave
a keynote entitled “Enterprise Web
Services: An Evolutionary View of Web
Services.” He made a crucial point – the
history of many technological issues is
this: proprietary solutions (immature),
proprietary solutions (mature), stan-
dardized solutions (immature). From
here, there is a crossroad. We
can either go to standards
(mature), which would be
ideal, or standards plus propri-
etary adds from vendors,
which would be bad. It would
fracture the Web services mar-
ket and more or less kill the
interoperabil-
ity promise.

Web servic-
es is at this
crossroad. If
what I saw on
the expo floor
is any indica-
tion, we are
going down the bad road. If you don’t want
to see that, take Merrick’s advice. Demand
standardization. Keep your vendors honest.
If we can do that, the promise of Web serv-
ices can be met. And that would be a fine
thing indeed.

Even in the face of all the seminars
and keynotes, I managed to spend
some time on the expo floor, speaking
with the vendors, learning a bit about
what they had to offer. The two prod-
ucts I found most fascinating deal with
XML in general, giving them a broader
applicability than the Web
services–focused products.

First, there is Allora from HiT
Software. Coming in winAllora (COM)
and jAllora (Java) flavors, this is a tool
for mapping XML to relational data.
Even my limited dabbling in XML
showed just how different these beasts
can be. While it is easy enough to take a
JDBC ResultSet and write it all to an
XML document, I can see that this
would get very tedious for more than
the odd table or two. The Graphical
Mapper shows your XML Schema or
DTD on one side and your database
schema on the other, allowing you to
map your relationships at design time.
Plus, Allora comes with mapping, data-
binding, and messaging APIs to make it
useful at runtime. These two features
alone might be worth the price of
admission, but Allora goes one step fur-
ther – it includes a set of SOAP inter-
faces so you can expose it as a Web
service. The holiday weekend and pub-
lishing schedules have kept me from

installing and running it at home, but I
was very impressed with the hands-on
demo of the Graphical Mapper.

The other product that caught my
fancy was Forum System’s XML Web
Services Security Appliance, which
deals specifically with securing XML
documents. This is a hardware device
that plugs into your network between
the firewall and the application server.
As we know, XML is basically self-

describing data. An
element called “pass-
word” or “card num-
ber” kind of screams
out to the world that

there’s good juicy data there. This is
rather a gaping vulnerability that the
security appliance addresses by
encrypting the data, either in totality or
on an element-by-element basis, and
protects it from end-to-end.

I would be remiss if, in the focus on
Web services, I failed to point out that
the conference also had a Java focus.
The best Java presentation I went to was
given by Rick Hightower of Trivera. His
talk on “Java Tools for Extreme
Programming” was well presented and
rather informative. Rick focused on the
testing and continuous integration por-
tions of XP, discussing JUnit, Ant, and
Cactus in detail. His talk proved to me
that no matter what you are doing, no
matter what you call your methodology,
testing is invaluable and that these tools
will make your life easier.

On Thursday there was a panel dis-
cussion on .NET versus J2EE. The stars
were Simon Phipps, chief technical evan-
gelist at Sun, and Barry Gregory, princi-
pal technology specialist from Microsoft.
Sharing the stage with them were Sean
Rhody, editor-in-chief of Web Services
Journal, Mike Kovach of FullTilt Systems,
and the editor-in-chief of these very

pages, Alan Williamson. Because this
conference had a .NET track (which,
admittedly, I did not take advantage of), I
had hoped for a fairly well-reasoned dis-
cussion. Some good points were made
on both sides. Sadly, most good points
were buried in bickering and the entire
discussion was peppered with not-so-
thinly-veiled snipes between the two
camps. Maybe it was naïve of me to
expect more, maybe it would have been

better to leave repre-
sentatives of Microsoft
and Sun out of the dis-
cussion, but as it stood,
the whole thing left a
sour taste in my
mouth.

Finally, right next to
the Web Services Edge
was PC EXPO/TECH-
XNY and attendees of
one got admission to

the other. While this may seem like a
great deal, free admission to PC EXPO
after all, it really took away from the
power of Web Services Edge. At the risk
of sound horribly l33t, the net effect
was hordes of mere users, wearing
“Gimme Free Stuff” buttons, gawping
like tourists at booths displaying things
they wouldn’t understand even if they
wanted to. They clogged the aisles,
wasted exhibitors’ time, and in some

cases kept us Web Services Edge atten-
dees from speaking to the vendors.
What’s more they glommed up more
than their share of the goodies. And
let’s face it, to tech folk like us, corpo-
rate toys are second in importance only
to free food.

Summing up: Web services exists in
some form. It is coming. You can either
help define it or live with what happens
out there. But if you’re reading this
magazine, you’ll end up working with it
on some level. Whatever shape this
mess takes, one thing is clear – XML is
the lingua franca of Web services. Learn
it. Live it. Love it. I know I spent a lot of
time talking about what Web services
isn’t. Sometimes, though, that’s more
important than learning what some-
thing is. Which made my four days at
the Web Services Edge Conference &
Expo invaluable.

sjb47@yahoo.com

R
ep

or
t

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

“In addition to an expo floor with dozens of vendors offering
products and services either supporting Web services or

claiming actually to enable them, there were 60 hour-long
seminars divided among five tracks – Java, Web Services,

XML, IT Strategy, and .NET”

73AUGUST 2002

Java COM

motorala
www.motorala.com

L E T T E R S T O T H E E D I T O R

Java COM

74 AUGUST 2002

Programming with a Model T

Vi and Emacs were good editors in
the time before there

was light (“Integrating
Development,” by Ajit Sagar
[Vol. 7, issue 6]). Punch
cards were good too, but I
don’t see anybody using
them. If you’re using vi and
Emacs, you’re programming
with a Model T at Model T
speed in an era of faster-
than-light machines with
1TB of L1 memory! Get
yourself a good IDE, Borland JBuilder, or
whatever and reprogram yourself to its
functions.

Greg Brett
greg.brett@faa.gov

Java Apps on Mobile Phones

While a Java app on your phone
may not be able to make or

answer phone calls, it should at least be
able to make use of an Internet connec-
tion (“My Kingdom for a Phone,” by Alan
Williamson [Vol. 7, issue 5]). I guess
most applications would rather use

Internet services than
call other people any-
way. In any case, I
would only want such
a feature enabled for
trustworthy programs.
Just imagine, a virus
that infected millions
of phones and called
stored numbers at ran-
dom, or even a rogue
program that could call
your contacts and

impersonate your voice.

Alex Prayle
alex@zookitec.com

Good Insight

The Critical Role
of Application

Architecture” by
Walter Hurst (Vol. 7,
issue 5) provides
good insight into
database program-
ming in an enter-
prise application. It

gives crucial inputs that help
design scalable and reliable
architecture.

Vijay Raghavan
vijayck_raghavan@hotmail.com

C#– Premature and Incomplete

The problem with C# is
that I strongly suspect it’s

vastly overrated by uSoft
(“There May Be Trouble
Ahead…” by Alan Williamson
[Vol. 7, issue 4]), but software
managers and team leaders
will choose it over Java
because:
1. It appears easier

and more pro-
ductive to use.
uSoft will

include ease-of-use fea-
tures and wizards in its IDE
to promote this illusion.

2. No one ever got fired for
choosing uSoft.

C# is a premature, incom-
plete, but seductive product. Anyone
truly serious in opposing this technolo-
gy, however, must learn C#, and use it to
build sufficiently complex apps to dis-
cover its shortcomings. Then, when it’s
your turn to contribute to a Java-versus-
C# decision in your company, you’ll have
real hard evidence. It’s unlikely your
opponent will know Java well, so you’ll
have the upper hand. You may even save
your project from failure.
You may even push Java to
incorporate some improve-
ments from C#, of which
there are undoubtedly a
few.

Simply, knowledge is
power.

Peter Elgee
pelgee@videotron.ca

The Pulse of the Tech Professional

Should I Stay or Should I Go?” by Bill
Baloglu and Billy Palmieri (Vol. 7,

issue 7) is a wonderful and humorous
article. The authors’ fin-
gers are really on the
pulse of what goes on
inside the mind and heart
of the tech professional!!
Bravo!!!

Lola
Diamondgirl0519@aol.com

The Perfect Answer

Programming
Restrictions in EJB

Development” by Leander van Rooijen
(Vol. 7, issue 7) is the perfect answer to
my problem with a local EJB that I post-

ed on Sun’s developer forum and on the
JavaLobby forum, called “Inter-EJB calls
2,000 times faster by using local EJBs –
great! But how?”

It’s important and difficult to avoid
read/write static fields with respect to
Singletons.

Thomas Taeger
taeger@classic-and-
class.com

Correction to References

My article in JDJ, “Java
Design: Creating

Flexible Code,” (Vol. 7,
issue 6) used concepts and
content from a number of

JavaWorld articles
without proper attri-
bution. The articles in
question are listed
below as references, as
they ought to have
been when the article
originally appeared. I
apologize to the
author Wm. Paul

Rogers, as well as to the read-
ers and staff of JavaWorld and
JDJ. This was a careless error
on my part.

References
• (Image and code) “Reveal

the magic behind subtype
polymorphism”: www.java-
world.com/javaworld/jw-
04-2001/jw-0413-poly-
morph.html

• “A primordial interface?”:
www.javaworld.com/javaworld/jw-03-
2001/jw-0309-primordial.html

• “Thanks type and gentle class”:
www.javaworld.com/javaworld/jw-01-
2001/jw-0119-type.html

I would also like to note that the
Java Language Specification and Java
in a Nutshell by Flanagan (O’Reilly)
was used to write this article. The
Data Access Object pattern is based
on the pattern as discussed in the Sun
Blueprints and Core J2EE Patterns:
Best Practices and Design Strategies by
Alur, Crupi, and Malks (Prentice Hall
PTR).

Mike Barlotta
mike.barlotta@aegis.net

L
et

te
rs

J2
SE

H
om

e
J2

E
E

J2
M

E

“

“

“

75AUGUST 2002

Java COM

sys-con media
www.sys-con.com

Java COMJava COM

76 AUGUST 2002

Making It Useful

C A R E E R O P P O R T U N I T I E S
J2

SE
H

om
e

J2
E

E
J2

M
E

jdjcolumn@objectfocus.com

Solving real-world problems

AUTHOR BIOS
Bill Baloglu is a

principal at
ObjectFocus

(www. ObjectFocus
.com), a Java staffing
firm in Silicon Valley.

Bill has extensive OO
experience and has

held software
development and

senior technical
management

positions at several
Silicon Valley firms.

Billy Palmieri is a
seasoned staffing

industry executive and
a principal at

ObjectFocus. His prior
position was at

Renaissance
Worldwide, where he

held several senior
management positions

in the firm’s Silicon
Valley operations.

But that love can also overflow and
drown out little details like business
plans and common sense. In the past
several years, technological advances
leapfrogged over real-world needs.

As a result, a lot of companies and
highly creative, motivated engineers
expended a tremendous amount of
time, effort, and money creating “killer
apps” that had no real problems to
solve.

A typical example of this is a compa-
ny that developed a supply chain appli-
cation for the apparel industry. What the
developers failed to realize is that the
apparel industry at the time was run-
ning quite nicely via fax and paper.

Many of the intended customers for
this high-tech application are small
companies run by non-English-speak-
ing people. For this application to work
in the real world, its developers needed
to convince everyone in the industry to
(1) decide on a common language, and
(2) buy into – and learn – one system.
Guess what. It didn’t happen.

It was once easy to find talented engi-
neers to buy into these pie-in-the-sky
enterprises, with the lure of untold bil-
lions once the product hit the street. But a
lot of the senior engineers we talk to today
now have a different set of priorities. They
no longer ask, “How much stock are they
offering and when is the IPO?”

Today’s top engineers are no longer
interested in building technology for its
own sake; they want to build something
that will solve real problems. Many of
them tell us that they became engineers
to make something useful. However,
after months or years of hard work,
many have found they’ve created some-
thing that’s useless.

Chris has been a software architect
for the past 10 years. His professional
experience spans both startup and
major corporate environments. For the
past year and a half, he’s worked at a
major “household name” software com-
pany where teams of up to 50 engineers
build his software applications.

“People who write software are cre-
ative,” he says. “But on a large software
project with teams of 10 or 20 people,
not everyone can create their own error-
handling mechanism.

“Lots of engineers come into a major
project and think they can do it better,
so they go off and do their own thing,”
says Chris. “The architectural discipline
is important. There are lots of aspects
that go into the product.”

In his experience, many engineers
lack the ability to follow an architectural
guideline. He attributes this problem to
the current focus of software engineer-
ing education.

“They spend a lot of time teaching
programming languages, so everyone
focuses on coding,” he says. “But almost
no one who’s come out of school recent-
ly knows what it means to build a prod-
uct or understands the value of architec-
ture.”

Recent engineering graduates enter-
ing the corporate world have an under-
standable need to prove themselves.
According to Chris, many of them try to
establish themselves by doing things
their own way, trying to prove that they
can do it better, faster.

“The startup culture encouraged that
approach,” he says. “Many had very
loose, creative environments with peo-
ple becoming heroes by working 24
hours straight over the weekend.”

That culture also nurtured the atti-
tude of “let’s make it and then see if it
works,” which is the complete opposite
of what’s required when a major compa-
ny sets out to design and build a product.

Many of these creative, lone-gun
engineering heroes now have difficulty
working in a collaborate environment,
on a specific piece of a very large puzzle.

“From the company’s viewpoint it
creates issues,” he says. “All engineers on
the team need to be clear on the product
and the architecture. They need to know
the technology and the alternatives, to
understand the whole product, not just
one part of it.”

Chris observes that with the startup
boom behind us, the interview process
has become more effective – to a point.
“People are looking for very specific
skillsets now; they’re not just hiring any-
one who’s available.”

Yet the hiring process doesn’t always
screen out candidates who may be tem-
peramentally unsuited for a large-scale
project when the interview consists only
of a candidate talking with a couple of
people for two hours.

Many of the major companies have
implemented more comprehensive, rig-
orous hiring processes to screen candi-
dates not only for skillsets and technical
expertise, but for their ability to work
effectively in a team.

Because when creating major prod-
ucts to solve real-world problems,
there’s a lot more required than creativi-
ty – and heroism.

• • •
E-mail us your feedback. We’re always

interested in hearing from you.

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

One of the distinctive qualities of the high-tech industry is that the people who
make technology love technology.They love its powerful capabilities, its potential, and
the opportunity it provides for creativity.

What’s in the next
issue of JDJ ?

THE ANATOMY AND PHYSIOLOGY OF
EJB 2.0 PRIMARY KEYS
When implementing container-managed persistence
in EJB 2.0, what are some of the decisions and details
involved? In an evolving marketplace, business
requirements keep changing, so something as impor-
tant as the Primary Key of an entity should be as con-
stant as possible.

CREATING A CUSTOM LAUNCHER
The most frustrating and error-prone aspect of Java
for the average user is just starting a Java program.
The monumental confusion of batch files, scripts, and
command-line cut-and-paste necessary to start a
Java program using the default launcher is an ongoing
problem area even for veteran developers. This article
shows how you can wipe away the whole mess and
easily write custom launchers for your applications.

WHOLE HOUSE AUDIO IN THE PALM OF
YOUR HAND - PART 2
Part 1 showed you how to develop an MP3 player in
Java, then control that player from a wireless handheld
device using a PersonalJava application. However, you
can get some wild combinations when listening to your
entire music collection at random. When a nice relaxing
Enya track fades out and you find yourself launching
into the world of Eminem, the shock can be consider-
able. Learn how to solve this problem as well as pro-
vide an ideal wireless mechanism for this application.

TRAINING DAYS
It’s no secret to anyone who works in the technology
industry that continued training (and retraining) is
required on an ongoing basis. The only thing that’s
constant in this business is change, and engineers
need to be ahead of the curve on the latest and great-
est technologies.

MANAGING JAVA
SOURCE CODE

DEPENDENCIES FOR SCM
This article explores the evolution of

the typical Java source code tree and
articulates the underlying relation-

ships that make even basic Java SCM
problematic. It also suggests a simple
way to manage source code relation-

ships to meet basic SCM goals.

ADVERTISERINDEX
ADVERTISER URL PHONE PAGE

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are set to protect the high edi-
torial quality of Java Developer’s Journal. All advertising is subject to approval by the Publisher. The Publisher assumes no liability for any
costs or damages incurred if for any reason the Publisher fails to publish an advertisement. In no event shall the Publisher be liable for any costs
or damages in excess of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The Advertiser is fully
responsible for all financial liability and terms of the contract executed by the agents or agencies who are acting on behalf of the Advertiser.
Conditions set in this document (except the rates) are subject to change by the Publisher without notice. No conditions other than those set forth
in this “General Conditions Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the content
of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the discretion of the Publisher. This discretion
includes the positioning of the advertisement, except for “preferred positions” described in the rate table. Cancellations and changes to adver-
tisements must be made in writing before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

Actuate Corporation www.actuate.com/info/jbjad.asp 800-884-8665 51

Altova www.altova.com 61

AltoWeb www.altoweb.com 21

AppDev Training www.appdev.com 800-578-2062 58

Apple Computer, Inc www.apple.com/xserve 4-5

BEA dev2dev.bea.com/useworkshop 6

Borland Software Corp. www.borland.com/new/jb7/5068.html 800-252-5547 29

Canoo Engineering AG www.canoo.com/ulc/ 41 61 228 94 44 25

Capella University www.capella.edu/getcred 1-888-CAPELLA ext. 6027 32

Compuware Corp. www.compuware.com/products/optimalj 800-468-6342 11

Covasoft www.covasoft.com/today's_tech/ 103

CTIA Wireless I.T. & Internet 2002 www.ctiashow.com 63

Dice www.dice.com 41

Engenuity Technologies www.jloox.com 800-684-5669 47

ESRI www.esri.com/arcims 888-289-5084 33

Fiorano Software www.fiorano.com 800-663-3621 53

IBM ibm.com/wepsphere/ebaydev 27

InetSoft Technology Corp. www.inetsoft.com/jdj 888-216-2353 55

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

INT, Inc www.int.com 713-975-7434 34

ava Developer's Journal www.sys-con.com/java 75

Jinfonet www.jinfonet.com/jdj8.htm 301-838-5560 31

Macromedia www.macromedia.com/go/jrun4jdj 37

Metrowerks Corp. www.wireless-studio.com 8

Motorola www.motorola.com/developers/wireless 73

\n software inc. www.nsoftware.com 49

n-ary www.javaSOS.com 43

Northwoods Software www.nwoods.com/go/ 800-434-9820 30

Oracle Corp. www.oracle.com/ad 800-633-1072 17

Parasoft Corporation www.parasoft.com/jdj8 888-305-0041 35

Precise Software www.precise.com/jdj 800-310-4777 23

QUALCOMM Incorporated http://brew.qualcomm.com/ZJD5 65

Rational Software www.rational.com/offer/javacd2 13

SilverStream Software www.silverstream.com/coals 1-888-823-9700 39

Sitraka www.sitraka.com/jclass/jdj 800-663-4723 19

Sitraka www.sitraka.com/jprobe/jdj 800-663-4723 57

Sitraka www.sitraka.com/performance/jdj 800-663-4723 104

Sonic Software www.sonicsoftware.com/jdj 800-989-3773 2

Sprint PCS http://developer.sprintpcs.com 67

Zero G www.zerog.com 415-512-7771 3, 59

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

Jav
a D

ude
s

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

102 AUGUST 2002

C U B I S T T H R E A D S

Now, the pursuit of this beauty did-
n’t come cheap – in 10 days, we semi-
consciously put over 3,000 miles on the
trusty minivan – but the relative drudg-
ery of the to and fro was surely and stu-
pendously compensated by the bald-
faced bundles of blatant beauty we
encountered when we got there.

The trip to the far side of Montana,
clear across four of the larger states, was
mostly as uneventful as the vast inter-
state highway system could possibly
promise: no flat tires, no breakdowns,
and no vast herds of unruly or unedu-
cated bison trampling my precious life-
sustaining box of little chocolate
donuts. (Give me enough strong black
coffee and little chocolate donuts, and
I’ll drive around the world.)

The familiar trip from Minnesota to
Wyoming (via I-90) crosses over 400
miles of my home state of South
Dakota, and is remarkable (if a little
painful) for its scenic monotony. With
notable exceptions (and given a few
pasture-sized bicubic patches), nearly
any stretch of the trip could be incon-
spicuously replaced with any other.

On the bright side, trips like this can
deepen your appreciation of the world’s
vastness. (Yeah, I actually tried that one
on my kids.) On the dark side, when the
charm of vastness wears thin, the hori-
zon starts to look like a looping cartoon
background: Tom chases Jerry across
the apparently infinite, hay-carpeted

living room, passing that same cheesy
billboard every 950ms. Been there.
Done that. It’s really big and mostly flat.

To be fair, the broadly dispersed
notables on the trans-Dakota trip
include such gems as the reservoir
behind the dammed Missouri River at
Chamberlain, those darned Badlands
near Wall, and the doggoned Black Hills
of South Dakota. Now, each of these
locations has already been a destina-
tion in my search for beauty (and,
hopefully, will be again), but this sum-
mer the ultimate destination was the
mountains – big mountains.

The Black Hills of South Dakota are
sort of like mountains. As geologic fea-
tures go, I’ve been told the “black moun-
tain hills of Dakota” are among the oldest
crustal features around – even older than
the Beatles’ song that made them famous
– and that this age accounts for the most-
ly smooth contours of their weathered
granite and pine-covered swells. Swells
are swell, I guess, but give me a good
rocky crag or two this summer!

Less geologically, more colloquially,
the notable sights on I-90 include several
concrete dinosaurs, a large metal pasture
sculpture of a bull head, and a billboard
offering 24-hour “toe” service. With such
visual wealth, how could you want for
more? Well, if you’re bold enough, or the
gas gauge approaches “E” at the right
time, you might want to take a short side
trip to Mitchell, South Dakota, and pass

one of the strangest buildings on earth.
Forming the outer layer of this oddly

shaped building, you’ll find literally
thousands of carefully mutilated car-
casses – ritualistically dismembered,
drawn and quartered, and finally stapled
to sheets of plywood. These carcasses are
arranged according to their primary
genetic attributes of color and morphol-
ogy, in such a fashion as to form patriot-
ic images of pioneers, astronauts, fire-
fighters, farmers, nuns, and such like.

Okay, well, I guess “carcass” is not
the best choice of words. But, if ears of
corn *were* sentient, then the so-called
“Corn Palace” of Mitchell, South
Dakota, would surely be (au)reality’s
single unholiest abomination.

Now, the trip west of Dakota – into
Wyoming and Montana – will have to
be the stuff of some future article. I’m
back at work now, but I’m not the same
as I was before the trip. Summer vaca-
tion melts all the year’s frozen goo in
my head and then pulls my cranial
drain plug, so that the molten goo runs
out of my ears and directly onto my T-
shirt. (To the naked eye, the goo stain
looks just like spilled coffee.)

If you happen to see me at some
midwestern truck stop next summer,
look for the stain. If it’s there, the trip is
going well. If it’s not, don’t worry: it’s
just a matter of time.

blair@blairwyman.com

WRITTEN BY
BLAIR WYMAN

Ialmost missed this month’s deadline for this column, but I
have a good excuse: I’ve been out searching for beauty again, and
must report that my family and I found some largish, mountain-
shaped accumulations of it in Glacier National Park, in north-
western Montana.

How I Spent My Summer Vacation

79AUGUST 2002

Java COM

covasoft.com

Java COM

80 AUGUST 2002

sitraka
www.sitraka.com

